精英家教网 > 高中数学 > 题目详情
点M为椭圆
x2
9
+
y2
5
=1
上一点,设点M到椭圆的右准线的距离为d,已知点A(-1,2),则3|AM|+2d的最大值为
18+3
5
18+3
5
分析:利用椭圆的第一定义和第二定义、三角形三边之间的大小关系等即可得出.
解答:解:如图所示,
由椭圆
x2
9
+
y2
5
=1
可得:a2=9,b2=5,c=
a2-b2
=2

e=
c
a
=
2
3

设椭圆的左右焦点分别为F′(-2,0),F(2,0).
由椭圆的第二定义可得:
|MF|
d
=e
=
2
3
,∴|MF|=
2
3
d

又|MF|+|MF′|=2a,|AM|-|MF′|≤|AF′|,|AF|=
(-1+2)2+22
=
5

∴3|AM|+2d=3(|AM|+
2
3
d)
=3(|AM|+|MF|)
=3(|AM|+2a-|MF′|)≤3(|AF′|+6)=18+3
5

故答案为18+3
5
点评:熟练掌握椭圆的第一定义和第二定义、三角形三边之间的大小关系及其转化方法等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆C:
x2
9
+
y2
5
=1
的左顶点、右焦点分别为A、F,右准线为l,N为l上一点,且在x轴上方,AN与椭圆交于点M.
(1)若AM=MN,求证:AM⊥MF;
(2)设过A,F,N三点的圆与y轴交于P,Q两点,求PQ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆
x2
9
+
y2
4
=1上一点M作圆x2+y2=2的两条切线,点A,B为切点.过A,B的直线l与x轴,y轴分别交于点P,Q两点,则△POQ的面积的最小值为
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C与椭圆C1
x2
9
+
y2
5
=1
有相同的焦点,且椭圆过点(2
3
3
)
,右焦点为F,
(1)求椭圆C的方程;
(2)若直线y=
1
2
x
与椭圆C交于M、N两点,求△FMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
x2
9
+
y2
5
=1的焦点F1、F2,在直线l:x+y-6=0上找一点M,求以F1、F2为焦点,通过点M且长轴最短的椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
9
+
y2
4
=1
及点M(1,1).
(1)直线l过点M与椭圆E相交于A,B两点,求当点M为弦AB中点时的直线l方程;
(2)直线l过点M与椭圆E相交于A,B两点,求弦AB的中点轨迹;
(3)(文)斜率为2的直线l与椭圆E相交于A,B两点,求弦AB的中点轨迹.
(3)(理)若椭圆E上存在两点A,B关于直线l:y=2x+m对称,求m的取值范围.

查看答案和解析>>

同步练习册答案