分析 (1)欲证AF⊥平面CBF,根据直线与平面垂直的判定定理可知只需证AF与平面CBF内两相交直线垂直,而AF⊥CB,AF⊥BF,BF∩BC=B,满足定理条件;
(2)欲证OM∥平面DAF,根据直线与平面平行的判定定理可知只需证OM/与平面DAF内一直线平行,设DF的中点为N,OM∥AN又AN?平面DAF,OM?平面DAF,满足定理条件.
解答
(1)证明:∵平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,
∴CB⊥平面ABEF,
∵AF?平面ABEF,
∴AF⊥CB,
又AF⊥BF,且BF∩BC=B,BF、BC?平面CB,
∴AF⊥平面CBF.
(2)证明:设DF的中点为N,则MN$\stackrel{∥}{=}$$\frac{1}{2}$CD,又AO$\stackrel{∥}{=}$$\frac{1}{2}$CD,则MN$\stackrel{∥}{=}$AO,
∴MNAO为平行四边形,
∴OM∥AN,
又AN?平面DAF,OM?平面DAF,
∴OM∥平面DAF.
点评 本题主要考查了直线与平面垂直的判定,以及直线与平面平行的判定,考查空间想象能力、运算能力和推理论证能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0≤x<3} | B. | {x|0≤x<1} | C. | {x|-3<x<0} | D. | {x|0<x<1} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | b<a<c | C. | c<b<a | D. | c<a<b |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com