精英家教网 > 高中数学 > 题目详情

【题目】—般地,若函数的定义域为,值域为,则称的“倍跟随区间”;特别地,若函数的定义域为,值域也为,则称的“跟随区间”.下列结论正确的是( )

A.的跟随区间,则

B.函数不存在跟随区间

C.若函数存在跟随区间,则

D.二次函数存在“3倍跟随区间”

【答案】BCD

【解析】

根据“倍跟随区间”的定义,分析函数在区间内的最值与取值范围逐个判断即可.

A,的跟随区间,因为在区间为增函数,故其值域为,根据题意有,解得,因为.A错误.

B,由题,因为函数在区间上均为增函数,故若存在跟随区间则有,的两根.

,无解.故不存在.B正确.

C, 若函数存在跟随区间,因为为减函数,故由跟随区间的定义可知,

,因为,所以.

易得.

所以,代入化简可得,同理也满足,在区间上有两根不相等的实数根.

,解得,C正确.

D,存在“3倍跟随区间”,则可设定义域为,值域为.,易得在区间上单调递增,此时易得为方程的两根,求解得.故存在定义域,使得值域为.

D正确.

故选:BCD

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

已知(cosxsinxsinx)(cosxsinx2cosx)

)求证:向量与向量不可能平行;()若f(x)·,且x∈时,求函数f(x)的最大值及最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ) 当时,求函数的单调区间;

(Ⅱ)求函数在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当时,若函数的导函数的图象与轴交于 两点,其横坐标分别为 ,线段的中点的横坐标为,且 恰为函数的零点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的单调区间;

(2)若,求证:函数只有一个零点,且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知无穷数列的前n项和为,记 ,…, 中奇数的个数为

(Ⅰ)若= n,请写出数列的前5项;

(Ⅱ)求证:"为奇数, (i = 2,3,4,...)为偶数”是“数列是单调递增数列”的充分不必要条件;

(Ⅲ)若,i=1, 2, 3,…,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市户居民的月平均用电量(单位:度),以分组的频率分布直方图如图.

1)求直方图中的值;

2)求月平均用电量的众数和中位数;

3)在月平均用电量为的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn为数列{an}的前n项和.已知

(Ⅰ)求{an}的通项公式;

(Ⅱ)令,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,

(1)求证:cos2+cos2=1;

(2)若cos(+A)sin(π+B)tan(C﹣π)<0,求证:ABC为钝角三角形.

查看答案和解析>>

同步练习册答案