精英家教网 > 高中数学 > 题目详情

【题目】已知圆的方程为

I)若点在圆的外部,求的取值范围

II)当时,是否存在斜率为的直线,使以被圆截得的弦为直径所作的圆过原点?若存在,求出的方程;若不存在,说明理由.

【答案】(I)II

【解析】试题分析:(1)由题意,点在圆的外部,可得,即可求解实数的取值范围;

2)依题意假设直线的方程为,又是弦的中点,得的方程,联立的方程可解得的坐标为,再由原点在以为直径的圆上,得,即可列出方程求解的值得出直线方程.

试题解析:(I

整理得:

得:

在该圆的外部,

的取值范围是

II)当时,圆的方程为

如图:依题意假设直线存在,其方程为

是弦的中点.

的方程为

联立的方程可解得的坐标为………7

原点在以为直径的圆上,

化简得:,解得:

的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=

若f(a)=14,求a的值

在平面直角坐标系中,作出函数y=f(x)的草图.(需标注函数图象与坐标轴交点处所表示的实数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元。

(1)设铁栅长为米,一堵砖墙长为米,求函数的解析式;

(2)为使仓库总面积达到最大,正面铁栅应设计为多长?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

(1)讨论函数的单调性;

(2)若存在两个极值点,求证:无论实数取什么值都有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的最小值为,且.

(1)求的解析式;

(2)若在区间上不单调,求实数的取值范围;

(3)在区间上,的图象恒在的图象上方,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:

(1)从3月1日至3月5日中任选2天,记发芽的种子数分别为,求事件“均小于25”的概率;

(2)请根据3月2日至3月4日的数据,求出关于的线性回归方程.

(参考公式:回归直线方程为,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某电子元件进行寿命追踪调查,所得情况如右频率分布直方图.

1)图中纵坐标处刻度不清,根据图表所提供的数据还原

2)根据图表的数据按分层抽样,抽取个元件,寿命为之间的应抽取几个;

3)从(2)中抽出的寿命落在之间的元件中任取个元件,求事件恰好有一个寿命为,一个寿命为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年天猫五一活动结束后,某地区研究人员为了研究该地区在五一活动中消费超过3000元的人群的年龄状况,随机在当地消费超过3000元的群众中抽取了500人作调查,所得概率分布直方图如图所示:记年龄在 对应的小矩形的面积分别是,且.

(1)以频率作为概率,若该地区五一消费超过3000元的有30000人,试估计该地区在五一活动中消费超过3000元且年龄在的人数;

(2)计算在五一活动中消费超过3000元的消费者的平均年龄;

(3)若按照分层抽样,从年龄在 的人群中共抽取7人,再从这7人中随机抽取2人作深入调查,求至少有1人的年龄在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司过去五个月的广告费支出与销售额单位:万元之间有下列对应数据:

2

4

5

6

8

40

60

50

70

工作人员不慎将表格中的第一个数据丢失.已知呈线性相关关系且回归方程为则下列说法销售额与广告费支出正相关丢失的数据表中为30;该公司广告费支出每增加1万元,销售额一定增加万元若该公司下月广告投入8万元,则销售

额为70万元.其中,正确说法有

A.1个 B.2个 C.3个 D.4个

查看答案和解析>>

同步练习册答案