【题目】如图4,四边形为正方形,平面,,于点,,交于点.
(1)证明:平面;
(2)求二面角的余弦值.
【答案】(1)详见解析;(2).
【解析】试题分析:(1)由平面,得到,再由四边形为正方形得到,从而证明平面,从而得到,再结合,即以及直线与平面垂直的判定定理证明平面;(2)先证明、、三条直线两两垂直,然后以点为坐标原点,、、所在直线分别为轴、轴、轴建立空间直角坐标系,利用空间向量法求出二面角的余弦值.
试题解析:(1)平面,
,又,,
平面,
,又,
平面,即平面;
(2)设,则中,,又,
,,由(1)知,
,,
,又,
,,同理,
如图所示,以为原点,建立空间直角坐标系,则,
,,,,
设是平面的法向量,则,又,
所以,令,得,,
由(1)知平面的一个法向量,
设二面角的平面角为,可知为锐角,
,即所求.
科目:高中数学 来源: 题型:
【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图所示,在空间直角坐标系的坐标平面内,若函数的图象与轴围成一个封闭区域,将区域沿轴的正方向上移4个单位,得到几何体如图一.现有一个与之等高的圆柱如图二,其底面积与区域面积相等,则此圆柱的体积为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知向量 =(2sinA,cos(A﹣B)), =(sinB,﹣1),且 = .
(Ⅰ)求角C的大小;
(Ⅱ)若 ,求b﹣a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.
(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
分组 | 频数 | 频率 |
[50,60) | 2 | 0.04 |
[60,70) | 8 | 0.16 |
[70,80) | 10 | |
[80,90) | ||
[90,100] | 14 | 0.28 |
合计 | 1.00 |
如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一装有水的直三棱柱容器(厚度忽略不计),上下底面均为边长为5的正三角形,侧棱为10,侧面水平放置,如图所示,点, , , 分别在棱, , , 上,水面恰好过点, , , ,且.
(1)证明: ;
(2)若底面水平放置时,求水面的高.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于x的不等式|x+1|+|x﹣1|<4的解集为M.
(1)设Z是整数集,求Z∩M;
(2)当a,b∈M时,证明:2|a+b|<|4+ab|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=3sinx+2cosx+1.若实数a,b,c使得af(x)+bf(x﹣c)=1对任意实数x恒成立,则 的值为( )
A.﹣1
B.
C.1
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
天气 | 晴 | 雨 | 阴 | 阴 | 阴 | 雨 | 阴 | 晴 | 晴 | 晴 | 阴 | 晴 | 晴 | 晴 | 晴 |
日期 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
天气 | 晴 | 阴 | 雨 | 阴 | 阴 | 晴 | 阴 | 晴 | 晴 | 晴 | 阴 | 晴 | 晴 | 晴 | 雨 |
(1)在4月份任取一天,估计西安市在该天不下雨的概率;
(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com