【题目】已知圆C的圆心为原点,且与直线 相切.
(1)求圆C的方程;
(2)点在直线上,过点引圆C的两条切线, ,切点为, ,求证:直线恒过定点.
【答案】解:(1)依题意得:圆的半径,所以圆的方程为。(4分)
(2)是圆的两条切线, 。在以为直径的圆上。
设点的坐标为,则线段的中点坐标为。
以为直径的圆方程为(8分)
化简得: 为两圆的公共弦,
直线的方程为
所以直线恒过定点。(12分)
【解析】试题分析:(1)由圆C与直线相切,得到圆心到直线的距离d=r,故利用点到直线的距离公式求出d的值,即为圆C的半径,又圆心为原点,写出圆C的方程即可;
(2)由PA,PB为圆O的两条切线,根据切线的性质得到OA与AP垂直,OB与PB垂直,根据90°圆周角所对的弦为直径可得A,B在以OP为直径的圆上,设出P的坐标为(8,b),由P和O的坐标,利用线段中点坐标公式求出OP中点坐标,即为以OP为直径的圆的圆心坐标,利用两点间的距离公式求出OP的长,即为半径,写出以OP为直径的圆方程,整理后,由AB为两圆的公共弦,两圆方程相减消去平方项,得到弦AB所在直线的方程,可得出此直线方程过(2,0),得证.
解:(1)依题意得:圆心(0,0)到直线的距离d=r,
∴d=,
所以圆C的方程为x2+y2=16①;
(2)连接OA,OB,
∵PA,PB是圆C的两条切线,
∴OA⊥AP,OB⊥BP,
∴A,B在以OP为直径的圆上,
设点P的坐标为(8,b),b∈R,
则线段OP的中点坐标为,
∴以OP为直径的圆方程为,
化简得:x2+y2﹣8x﹣by=0②,b∈R,
∵AB为两圆的公共弦,
∴①﹣②得:直线AB的方程为8x+by=16,b∈R,即8(x﹣2)+by=0,
则直线AB恒过定点(2,0).
科目:高中数学 来源: 题型:
【题目】甲乙两支排球队进行比赛,先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是 ,其余每局比赛甲队获胜的概率都是 .设各局比赛结果相互独立.
(1)分别求甲队3:0,3:1,3:2胜利的概率;
(2)若比赛结果3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分,对方得1分,求乙队得分X的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,F1 , F2分别为椭圆 + =1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.
(1)若点C的坐标为( , ),且BF2= ,求椭圆的方程;
(2)若F1C⊥AB,求椭圆离心率e的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的取值范围是( )
A.
B.k<0或
C.
D.或
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
如图,四棱锥P -ABCD的底面是矩形,侧面PAD是正三角形,
且侧面PAD⊥底面ABCD,E 为侧棱PD的中点。
(1)求证:PB//平面EAC;
(2)求证:AE⊥平面PCD;
(3)当为何值时,PB⊥AC ?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的最大值为3,其图象相邻两条对称轴之间的距离为.
(Ⅰ)求函数的解析式和当时的单调减区间;
(Ⅱ)的图象向右平行移动个长度单位,再向下平移1个长度单位,得到的图象,用“五点法”作出在内的大致图象.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,BC边上的高所在直线的方程为x-2y+1=0,∠A的平分线所在的直线方程为y=0.若点B的坐标为(1,2),求点A和点C的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com