(本题满分10分) 如图,用一付直角三角板拼成一直二面角A—BD—C,若其中给定 AB=AD =2,
,
,
(Ⅰ)求三棱锥A-BCD的体积;
(Ⅱ)求点A到BC的距离.
![]()
(Ⅰ)
(Ⅱ)![]()
【解析】本题考查的知识点是空间点、线、面的距离计算,棱锥的体积,其判断AE⊥平面BCD(即AE是平面BCD上的高)及判断AF垂直BC(即AF长为点A到BC的距离)是解答本题的关键。
(I)由已知中,用一付直角三角板拼成一直二面角A-BD-C,若其中给定 AB=AD=2,∠BCD=90°,∠BDC=60°,我们利用面面垂直的性质,我们易求出三棱锥A-BCD的高AE的长,及底面△BCD的面积,代入棱锥体积公式,即可得到答案.
(II)过E点做EF∥CD,利用线面垂直的性质及判定定理,我们易判断AF即为点A到BC的距离,在RT△AEF中,求出AE及EF值后,利用勾股定理,我们易求出AF的值.
科目:高中数学 来源: 题型:
17.本题满分10分已知函数
的图象在y轴上的截距为
,相邻的两个最值点是
和
(1)求函数
;(2)设
,问将函数
的图像经过怎样的变换可以得到
的图像?(3)画出函数
在区间
上的简图.
查看答案和解析>>
科目:高中数学 来源:2014届浙江省高二下学期期中考试理科数学试卷(解析版) 题型:解答题
(本题满分10分)
(Ⅰ)设
,求证:
;
(Ⅱ)设
,求证:三数
,
,
中至少有一个不小于2.
查看答案和解析>>
科目:高中数学 来源:2014届河南省高二上学期期末考试理科数学试卷(解析版) 题型:解答题
(本题满分10分)
如图,已知正四棱柱ABCD—A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,
![]()
⑴求证:A1C⊥平面BDE;
⑵求A1B与平面BDE所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省扬州市宝应县高三下学期期初测试数学试卷 题型:解答题
(本题满分10分)
如图,已知正三棱柱
的所有棱长都为2,
为棱
的中点,
(1)求证:
平面
;
(2)求二面角
的余弦值大小.
![]()
查看答案和解析>>
科目:高中数学 来源:2010-2011年辽宁省高二上学期期末考试数学理卷 题型:解答题
(本题满分10分)
如图,要计算西湖岸边两景点
与
的距离,由于地形的限制,需要在岸上选取
和
两点,现测得
,
,
,
,
,求两景点
与
的距离(精确到0.1km).参考数据:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com