精英家教网 > 高中数学 > 题目详情
9.有一曲线在x轴的上方,曲线上的每一点到x轴的距离减去这点到点A(0,2)的距离的差是2,求曲线的方程.

分析 取曲线上任意一点(x,y)(y>0),利用曲线上的每一点到x轴的距离减去这点到点A(0,2)的距离的差是2,可得$\sqrt{{x}^{2}+(y-2)^{2}}$-y=2,化简可得曲线的方程.

解答 解:取曲线上任意一点(x,y)(y>0)
∵曲线上的每一点到x轴的距离减去这点到点A(0,2)的距离的差是2,
∴$\sqrt{{x}^{2}+(y-2)^{2}}$-y=2
∴x2=8y(y>0).

点评 本题考查曲线的方程,考查直接法的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=1og2$\frac{3x-1}{3x+1}$.
(1)求函数的定义域;
(2)证明:函数是奇函数;
(3)证明:函数中其定义域上的每个区间上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.二次函数y=ax2+bx+c(a≠0).
当a>0时,值域为[$\frac{4ac-{b}^{2}}{4a}$,+∞);
当a<0时,值域为(-∞,$\frac{4ac-{b}^{2}}{4a}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)=2x-x2共有m个零点,g(x)=2x+x2-2有n个零点,且f(x)=2x-x2的一个零点为4,则m+n=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.根据条件求值:
(1)已知lg2=a,lg3=b,求lg$\sqrt{54}$.
(2)已知logax=m,logay=n,求loga($\root{4}{a}$•$\root{3}{\frac{x}{\root{4}{y}}}$).
(3)已知lnx=2lna+3lnb-5lnc,求x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知平面直角坐标系中,点O为坐标原点,点A(sinx,1),B(cosx,0),C(-sinx,2),点P在直线AB上,且$\overrightarrow{AB}=\overrightarrow{BP}$.
(1)记函数f(x)=$\overrightarrow{BP}•\overrightarrow{CA}$,判断点($\frac{7π}{8}$,0)是否为函数f(x)图象的对称中心,若是,请给予证明;若不是,请说明理由.
(2)若函数g(x)=|$\overrightarrow{OP}+\overrightarrow{OC}$|,且x∈[-$\frac{π}{12}$,$\frac{π}{2}$],求函数g(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.作函数y=$\left\{\begin{array}{l}{x+2,x∈[1,3]}\\{3,x∈(-1,1)}\\{-x,x∈[-3,-1]}\end{array}\right.$的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知下列不等式,比较正数m,n的大小.
(1)log3m<log3n;
(2)log0.3m>log0.3n.
(3)logam<logan(0<a<1);
(4)logam>logan(a>1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知复数z=1+i.
(Ⅰ)若w=z2+3$\overline{z}$-4,求w的值;
(Ⅱ)若$\frac{{z}^{2}+az+b}{{z}^{2}-z+1}$=1-i,求|a+bi|的值.

查看答案和解析>>

同步练习册答案