【题目】已知一袋中有标有号码1、2、3、4的卡片各一张,每次从中取出一张,记下号码后放回,当四种号码的卡片全部取出时即停止,则恰好取6次卡片时停止的概率为______.
【答案】
【解析】
恰好取6次卡片时停止,说明前5次出现了3种号码且第6次出现第4种号码.分两类,三种号码出现的次数分别为3, 1, 1或者2, 2, 1.每类中可以分步完成,先确定三种号码卡片出现顺序有种,再分别确定这三种号码卡片出现的位置(注意平均分组问题),最后让第四种颜色出现有一种方法,相乘可得,最后根据古典概型求概率即可.
由分步乘法计数原理知,每次从中取出一张,记下号码后放回,进行6次一共有种不同的取法.
恰好取6次卡片时停止,说明前5次出现了3种号码且第6次出现第4种号码,三种号码出现的次数分别为3, 1, 1或者2, 2, 1,
三种号码分别出现3,1,1且6次时停止的取法有 种,
三种号码分别出现2,2,1 且6次时停止的取法有 种,
由分类加法计数原理知恰好取6次卡片时停止,共有种取法,
所以恰好取6次卡片时停止的概率为: ,
故答案为:
科目:高中数学 来源: 题型:
【题目】个人在某个节日期间互通电话问候,已知其中每个人至多打通了三个朋友家的电话,任何两个人之间至多进行一次通话,且任何三个人中至少有两人,其中一个人打通了另一个人家里的电话,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的顶点在坐标原点,其焦点在轴正半轴上,为直线上一点,圆与轴相切(为圆心),且,关于点对称.
(1)求圆和抛物线的标准方程;
(2)过的直线交圆于,两点,交抛物线于,两点,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中装着10个外形完全相同的小球,其中标有数字1的小球有1个,标有数字2的小球有2个,标有数字3的小球有3个,标有数字4的小球有4个.
现从袋中任取3个小球,按3个小球上最大数字的8倍计分,每个小球被取出的可能性都相等,用表示取出的三个小球上的最大数字,求:
(1)取出的3个小球上的数字互不相同的概率;
(2)随机变量的分布列;
(3)计算介于20分到40分之间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,锐角的三边互不相等,其垂心为,是边的中点,直线,的外接圆交的外接圆于,直线与的外接圆、的外接圆分别交于证明:
(1)平分;
(2)三线共点。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:如果函数的导函数为,在区间上存在,使得,,则称为区间上的“双中值函数“已知函数是上的“双中值函数“,则实数m的取值范围是
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com