精英家教网 > 高中数学 > 题目详情
8.若曲线C1:x2+y2-2x=0与曲线C2:mx2-xy+mx=0有三个不同的公共点,则实数m的取值范围是(  )
A.(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)B.(-∞,-$\frac{\sqrt{3}}{3}$)∪($\frac{\sqrt{3}}{3}$,+∞)C.(-∞,0)∪(0,+∞)D.(-$\frac{\sqrt{3}}{3}$,0)∪(0,$\frac{\sqrt{3}}{3}$)

分析 根据题意,分析可得曲线C2表示两条直线:x=0,y=m(x+1),曲线C1为圆心(1,0),半径为1的圆;分m=0与m≠0两种情况,结合直线与圆的位置关系进行讨论,求出m的取值范围,综合即可得答案.

解答 解:根据题意,曲线C2:mx2-xy+mx=0,即x(mx-y+m)=0,
则曲线C2表示两条直线:x=0,y=m(x+1),
曲线C1:x2+y2-2x=0,即(x-1)2+y2=1,为圆心(1,0),半径为1的圆;
当m=0时,曲线C2表示两条直线:x=0与y=0,与曲线C1:只有2个交点,不符合题意,
当m≠0时,
直线x=0与曲线C1只有一个交点,
则直线y=m(x+1)与曲线C1:x2+y2-2x=0有2个交点,即直线y=m(x+1)与圆(x-1)2+y2=1相交,
则有$\frac{|2m|}{\sqrt{{m}^{2}+1}}$<1,
解可得:-$\frac{\sqrt{3}}{3}$<m<$\frac{\sqrt{3}}{3}$,且m≠0;
综合可得:m的取值范围是(-$\frac{\sqrt{3}}{3}$,0)∪(0,$\frac{\sqrt{3}}{3}$);
故选:D.

点评 本题考查直线与圆的位置关系,注意分析曲线C2:mx2-xy+mx=0的形式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数 f(x)=x-ln x-2.
(Ⅰ)求函数 f ( x) 的最小值;
(Ⅱ)如果不等式 x ln x+(1-k)x+k>0(k∈Z)在区间(1,+∞)上恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x≤1}\\{2+lo{g}_{3}x,x>1}\end{array}\right.$,若f[f(0)+f(m)]=3,则m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=2x2+ax-b(a,b∈R)的两个零点分别在区间$(\frac{1}{2},1)$和(1,2)内,则z=a+b的最大值为(  )
A.0B.-4C.$-\frac{14}{3}$D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.以直角坐标系xOy的坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t+4\sqrt{2}}\end{array}\right.$(t为参数),圆C的极坐标方程为ρ=2cos(θ+$\frac{π}{4}$).
(1)求圆C的直角坐标;
(2)试判断直线l与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,m),且|$\overrightarrow{a}+\overrightarrow{b}$|=|$\overrightarrow{a}-\overrightarrow{b}$|,则m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x)=cosx,$则f'(\frac{π}{2})$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=xlnx+2,g(x)=x2-mx.
(1)求f(x)在点(1,f(1))处的切线方程;
(2)求函数f(x)在[t,t+2](t>0)上的最小值;
(3)若存在${x_0}∈[{\frac{1}{e},e}]$使得mf'(x)+g(x)≥2x+m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.复数z=($\frac{1+i}{-1+i}$)2016+i3(i为虚数单位)的共轭复数为(  )
A.1+2iB.1+iC.1-iD.1-2i

查看答案和解析>>

同步练习册答案