精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x≤1}\\{2+lo{g}_{3}x,x>1}\end{array}\right.$,若f[f(0)+f(m)]=3,则m=1.

分析 根据f(3)=3得f(0)+f(m)=3,故而f(m)=2,再分情况列方程求出m的值.

解答 解:令x+1=3得x=2(舍),
令2+log3x=3得x=3,
∴f(3)=3,
∴f(0)+f(m)=3,
又f(0)=1,∴f(m)=2.
若m≤1,则m+1=2,解得m=1,
若m>1,则2+log3m=2,解得m=1(舍),
∴m=1.
故答案为:1.

点评 本题考查了分段函数的函数值计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在直角坐标系中xOy中,已知曲线C1:$\left\{\begin{array}{l}x=1+\sqrt{2}cosα\\ y=1+\sqrt{2}sinα\end{array}\right.(α$为参数),以坐标原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C2:ρ=$\frac{a}{{cos(θ-\frac{π}{4})}}$,若射线θ=ϕ,θ=ϕ+$\frac{π}{4}$,θ=Φ-$\frac{π}{4}$,θ=Φ+$\frac{π}{2}$与曲线C1分别交于(异于极点O)的四点A,B,C,D
(1)若曲线C1关于曲线C2对称,求a的值,并求曲线C1的极坐标方程;
(2)求|OA|•|OC|+|OB|•|OD|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=e2x+1-2mx-$\frac{3}{2}$m,其中m∈R,e为自然对数底数.
(1)讨论函数f(x)的单调性;
(2)若不等式f(x)≥n对任意x∈R都成立,求m•n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设集合A={x|y=log2(3-x)},B={y|y=2x,x∈[0,2]}则A∩B=(  )
A.[0,2]B.(1,3)C.[1,3)D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.关于x、y的二元一次方程组$\left\{\begin{array}{l}x+5y=0\\ 2x+3y=4\end{array}\right.$的系数行列式D为(  )
A.$|{\begin{array}{l}0&5\\ 4&3\end{array}}|$B.$|{\begin{array}{l}1&0\\ 2&4\end{array}}|$C.$|{\begin{array}{l}1&5\\ 2&3\end{array}}|$D.$|{\begin{array}{l}6&0\\ 5&4\end{array}}|$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图点G是三角形ABO的重心,PQ是过G的分别交OA,OB于P,Q的一条线段,且OP=mOA,OQ=nOB,(m,n∈R).求证$\frac{1}{m}$+$\frac{1}{n}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l的参数方程为:$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$,(t为参数),以坐标原点为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为:ρsin2θ=4acosθ(a>0).
(1)求直线1的普通方程及曲线C的普通方程;
(2)若直线l与曲线C相交于M,N两点,且|MN|=8$\sqrt{5}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若曲线C1:x2+y2-2x=0与曲线C2:mx2-xy+mx=0有三个不同的公共点,则实数m的取值范围是(  )
A.(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)B.(-∞,-$\frac{\sqrt{3}}{3}$)∪($\frac{\sqrt{3}}{3}$,+∞)C.(-∞,0)∪(0,+∞)D.(-$\frac{\sqrt{3}}{3}$,0)∪(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在5件产品中,有3件一等品和2件二等品,从中任取3件,则至少有2件一等品的概率是(  )
A.$\frac{3}{5}$B.$\frac{3}{10}$C.$\frac{7}{10}$D.$\frac{9}{10}$

查看答案和解析>>

同步练习册答案