精英家教网 > 高中数学 > 题目详情
2.关于x、y的二元一次方程组$\left\{\begin{array}{l}x+5y=0\\ 2x+3y=4\end{array}\right.$的系数行列式D为(  )
A.$|{\begin{array}{l}0&5\\ 4&3\end{array}}|$B.$|{\begin{array}{l}1&0\\ 2&4\end{array}}|$C.$|{\begin{array}{l}1&5\\ 2&3\end{array}}|$D.$|{\begin{array}{l}6&0\\ 5&4\end{array}}|$

分析 利用线性方程组的系数行列式的定义直接求解.

解答 解:关于x、y的二元一次方程组$\left\{\begin{array}{l}x+5y=0\\ 2x+3y=4\end{array}\right.$的系数行列式:
D=$|\begin{array}{l}{1}&{5}\\{2}&{3}\end{array}|$.
故选:C.

点评 本题考查线性方程组的系数行列式的求法,是基础题,解题时要认真审题,注意线性方程组的系数行列式的定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.从a,b,c,d,e这5个元素中取出4个放在四个不同的格子中,且元素b不能放在第二个格子中,问共有96种不同的放法.(用数学作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某地方政府欲将一块如图所示的直角梯形ABCD空地改建为健身娱乐广场,已知AD∥BC,AD⊥AB,AD=2BC=2$\sqrt{3}$百米,AB=3百米,广场入口P在AB上,且AP=2BP,根据规划,过点P铺设两条互相垂直的笔直小路PM、PN(小路宽度不计),点M、N分别在边AD、BC上(包含端点),△PAM区域拟建为跳舞健身广场,△PBN区域拟建为儿童乐园,其他区域铺设绿化草坪,设∠APM=θ.
(1)求绿化草坪面积的最大值;
(2)现拟将两条小路PN、PN进行不同风格的美化,小路PM的美化费用为每百米1万元,小路PN的美化费用为每百米2万元,试确定点M,N的位置,使得小路PM,PN的总美化费用最低,并求出最低费用.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}前n项和为Sn
(1)若Sn=2n-1,求数列{an}的通项公式;
(2)若a1=$\frac{1}{2}$,Sn=anan+1,an≠0,求数列{an}的通项公式;
(3)设无穷数列{an}是各项都为正数的等差数列,是否存在无穷等比数列{bn},使得an+1=anbn恒成立?若存在,求出所有满足条件的数列{bn}的通项公式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$+$\overrightarrow{b}$|等于(  )
A.3B.2C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x≤1}\\{2+lo{g}_{3}x,x>1}\end{array}\right.$,若f[f(0)+f(m)]=3,则m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知△ABC中,∠BAC=60°,AB=4,AC=3,若E在线段BC上,且BE=2EC,求∠EAC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.以直角坐标系xOy的坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t+4\sqrt{2}}\end{array}\right.$(t为参数),圆C的极坐标方程为ρ=2cos(θ+$\frac{π}{4}$).
(1)求圆C的直角坐标;
(2)试判断直线l与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,a,b,c分别是角A,B,C的对边,且a=3,c=1,$B=\frac{π}{3}$,则b的值为$\sqrt{7}$.

查看答案和解析>>

同步练习册答案