精英家教网 > 高中数学 > 题目详情
10.已知数列{an}前n项和为Sn
(1)若Sn=2n-1,求数列{an}的通项公式;
(2)若a1=$\frac{1}{2}$,Sn=anan+1,an≠0,求数列{an}的通项公式;
(3)设无穷数列{an}是各项都为正数的等差数列,是否存在无穷等比数列{bn},使得an+1=anbn恒成立?若存在,求出所有满足条件的数列{bn}的通项公式;若不存在,说明理由.

分析 (1)由数列的递推式:n=1时,a1=S1,当n≥2时,an=Sn-Sn-1,计算即可得到所求通项公式;
(2)求出a1=a1a2,a1≠0,可得a2=1,当n≥2时,an=Sn-Sn-1=anan+1-an-1an,即有an+1-an-1=1,即有数列{an}中奇数项和偶数项分别构成公差为1的等差数列,运用等差数列的通项公式即可得到所求通项;
(3)设an=c+dn,假设存在无穷等比数列{bn},使得an+1=anbn恒成立.设数列{bn}的公比为q,则bn+1=qbn
即有$\frac{{a}_{n+2}}{{a}_{n+1}}$=q•$\frac{{a}_{n+1}}{{a}_{n}}$,则(dn+2d+c)(dn+c)=q(dn+d+c)2对一切n为自然数成立.展开等式,取n=1,2,3,再由恒成立思想,可得d,q的值,解方程即可判断存在性.

解答 解:(1)n=1时,a1=S1=2-1=1,
当n≥2时,an=Sn-Sn-1=2n-1-(2n-1-1)=2n-1
上式对n=1也成立.
综上可得数列{an}的通项公式为an=2n-1
(2)a1=$\frac{1}{2}$,Sn=anan+1,an≠0,
可得a1=a1a2,a1≠0,可得a2=1,
当n≥2时,an=Sn-Sn-1=anan+1-an-1an
即有an+1-an-1=1,
即有数列{an}中奇数项和偶数项分别构成公差为1的等差数列,
可得a2n-1=$\frac{1}{2}$+n-1=$\frac{2n-1}{2}$,a2n=1+n-1=n=$\frac{2n}{2}$,
故数列{an}的通项公式为an=$\frac{n}{2}$;
(3)设an=c+dn,假设存在无穷等比数列{bn},使得an+1=anbn恒成立.
设数列{bn}的公比为q,则bn+1=qbn
即有$\frac{{a}_{n+2}}{{a}_{n+1}}$=q•$\frac{{a}_{n+1}}{{a}_{n}}$,
即an+2an=qan+12
则(dn+2d+c)(dn+c)=q(dn+d+c)2对一切n为自然数成立.
即(d2-qd2)n2+2(1-q)d(c+d)n+c(2d+c)-q(d+c)2=0对n∈N*成立.
取n=1,2,3可得(d2-qd2)+2(1-q)d(c+d)+c(2d+c)-q(d+c)2=0①
4(d2-qd2)+4(1-q)d(c+d)+c(2d+c)-q(d+c)2=0②
9(d2-qd2)+6(1-q)d(c+d)+c(2d+c)-q(d+c)2=0③
由恒成立思想可得d2-qd2=0,(1-q)d(c+d)=0,c(2d+c)-q(d+c)2=0,
当d=0时,an=c>0,所以bn=1(n∈N*),检验满足要求;
当d≠0,q=1,所以c(2d+c)-q(d+c)2=0,则d=0,矛盾.
综上可得,当等差数列{an}的公差d=0,存在无穷等比数列{bn},
使得an+1=anbn恒成立,且bn=1;
当等差数列{an}的公差d≠0,不存在无穷等比数列{bn},
使得an+1=anbn恒成立.

点评 本题考查数列的通项公式的求法,注意运用数列的递推式,考查等差数列和等比数列的定义和通项公式的运用,以及存在性问题的解法和恒成立思想的运用,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=sin(πx+$\frac{π}{4}$)和函数g(x)=cos(πx+$\frac{π}{4}$)在区间[-$\frac{9}{4}$,$\frac{3}{4}$]上的图象交于A,B,C三点,则△ABC的面积是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{3\sqrt{2}}{4}$C.$\frac{5\sqrt{2}}{4}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角等于$\frac{π}{3}$,若|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,则|2$\overrightarrow{a}$-3$\overrightarrow{b}$|=$\sqrt{61}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=e2x+1-2mx-$\frac{3}{2}$m,其中m∈R,e为自然对数底数.
(1)讨论函数f(x)的单调性;
(2)若不等式f(x)≥n对任意x∈R都成立,求m•n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若正实数a,b满足$\frac{1}{a+1}$+$\frac{1}{b+2}$=$\frac{1}{3}$,则ab+a+b的最小值为6$\sqrt{6}$+14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设集合A={x|y=log2(3-x)},B={y|y=2x,x∈[0,2]}则A∩B=(  )
A.[0,2]B.(1,3)C.[1,3)D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.关于x、y的二元一次方程组$\left\{\begin{array}{l}x+5y=0\\ 2x+3y=4\end{array}\right.$的系数行列式D为(  )
A.$|{\begin{array}{l}0&5\\ 4&3\end{array}}|$B.$|{\begin{array}{l}1&0\\ 2&4\end{array}}|$C.$|{\begin{array}{l}1&5\\ 2&3\end{array}}|$D.$|{\begin{array}{l}6&0\\ 5&4\end{array}}|$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l的参数方程为:$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$,(t为参数),以坐标原点为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为:ρsin2θ=4acosθ(a>0).
(1)求直线1的普通方程及曲线C的普通方程;
(2)若直线l与曲线C相交于M,N两点,且|MN|=8$\sqrt{5}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow a=(-2,3,-5)$与向量$\overrightarrow b=(4,1,z)$垂直,则z的值是(  )
A.2B.1C.-1D.-2

查看答案和解析>>

同步练习册答案