精英家教网 > 高中数学 > 题目详情
5.若正实数a,b满足$\frac{1}{a+1}$+$\frac{1}{b+2}$=$\frac{1}{3}$,则ab+a+b的最小值为6$\sqrt{6}$+14.

分析 用a表示出b,利用基本不等式得出最值.

解答 解:∵$\frac{1}{a+1}$+$\frac{1}{b+2}$=$\frac{1}{3}$,∴3(a+1)+3(b+2)=(a+1)(b+2),
∴ab=a+2b+7,
a=$\frac{2b+7}{b-1}$,∵a,b都是正数,∴b>1.
∴ab+a+b=a+2b+7+a+b=2a+3b+7=$\frac{4b+14}{b-1}$+3b+7
=$\frac{3{b}^{2}+8b+7}{b-1}$=3(b-1)+$\frac{18}{b-1}$+14≥2$\sqrt{54}$+14=6$\sqrt{6}$+14.
当且仅当3(b-1)=$\frac{18}{b-1}$即b=$\sqrt{6}$+1时取等号,此时a=2+$\frac{3\sqrt{6}}{2}$.
故答案为:6$\sqrt{6}$+14.

点评 本题考查了基本不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知在△ABC中,$cosC+(cosA-\sqrt{3}sinA)cosB=0$.
(1)求角B的大小;
(2)若a+c=1,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若变量x,y满足约束条件$\left\{\begin{array}{l}y≤2x\\ y≥-2x,x≤3\end{array}$,则目标函数z=x-2y的最大值为15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某地方政府欲将一块如图所示的直角梯形ABCD空地改建为健身娱乐广场,已知AD∥BC,AD⊥AB,AD=2BC=2$\sqrt{3}$百米,AB=3百米,广场入口P在AB上,且AP=2BP,根据规划,过点P铺设两条互相垂直的笔直小路PM、PN(小路宽度不计),点M、N分别在边AD、BC上(包含端点),△PAM区域拟建为跳舞健身广场,△PBN区域拟建为儿童乐园,其他区域铺设绿化草坪,设∠APM=θ.
(1)求绿化草坪面积的最大值;
(2)现拟将两条小路PN、PN进行不同风格的美化,小路PM的美化费用为每百米1万元,小路PN的美化费用为每百米2万元,试确定点M,N的位置,使得小路PM,PN的总美化费用最低,并求出最低费用.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.无论k取任何实数,直线y=kx-k都经过一个定点,则该定点坐标为(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}前n项和为Sn
(1)若Sn=2n-1,求数列{an}的通项公式;
(2)若a1=$\frac{1}{2}$,Sn=anan+1,an≠0,求数列{an}的通项公式;
(3)设无穷数列{an}是各项都为正数的等差数列,是否存在无穷等比数列{bn},使得an+1=anbn恒成立?若存在,求出所有满足条件的数列{bn}的通项公式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$+$\overrightarrow{b}$|等于(  )
A.3B.2C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知△ABC中,∠BAC=60°,AB=4,AC=3,若E在线段BC上,且BE=2EC,求∠EAC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆C的参数方程为$\left\{\begin{array}{l}{x=1+2cosθ}\\{y=\sqrt{3}+2sinθ}\end{array}\right.$(θ为参数),若P是圆C与x轴的交点,以原点O为极点,x轴的正半轴为极轴建立极坐标系,设过点P的圆C的切线为l
(Ⅰ)求直线l的极坐标方程
(Ⅱ)求圆C上到直线ρ(cosθ+$\sqrt{3}$sinθ)+6=0的距离最大的点的直角坐标.

查看答案和解析>>

同步练习册答案