精英家教网 > 高中数学 > 题目详情
7.已知圆C的参数方程为$\left\{\begin{array}{l}{x=1+2cosθ}\\{y=\sqrt{3}+2sinθ}\end{array}\right.$(θ为参数),若P是圆C与x轴的交点,以原点O为极点,x轴的正半轴为极轴建立极坐标系,设过点P的圆C的切线为l
(Ⅰ)求直线l的极坐标方程
(Ⅱ)求圆C上到直线ρ(cosθ+$\sqrt{3}$sinθ)+6=0的距离最大的点的直角坐标.

分析 (Ⅰ)圆C的参数方程消去参数θ,得圆C的普通方程为(x-1)2+(y-$\sqrt{3}$)2=4,由题设知,圆心C(1,$\sqrt{3}$),P(2,0),过P点的切线的倾斜角为30°,设M(ρ,θ)是过P点的圆C的切线上的任一点,由正弦定理得$\frac{ρ}{sin150°}=\frac{2}{sin(30°-θ)}$,由此能求出直线l的极坐标方程.
(Ⅱ)直线的直角坐标方程为x+$\sqrt{3}$y+6=0,设圆上的点M(1+2cosθ,$\sqrt{3}+2sinθ$),求出点M到直线的距离d=$\frac{1}{2}[4sin(θ+\frac{π}{6})+10]$,当θ=$\frac{π}{3}$时,点M到直线的距离取最大值,由此能求出圆C上到直线ρ(cosθ+$\sqrt{3}$sinθ)+6=0的距离最大的点的直角坐标.

解答 解:(Ⅰ)∵圆C的参数方程为$\left\{\begin{array}{l}{x=1+2cosθ}\\{y=\sqrt{3}+2sinθ}\end{array}\right.$(θ为参数),
∴圆C的参数方程消去参数θ,得圆C的普通方程为(x-1)2+(y-$\sqrt{3}$)2=4,
∵P是圆C与x轴的交点,以原点O为极点,x轴的正半轴为极轴建立极坐标系,设过点P的圆C的切线为l
由题设知,圆心C(1,$\sqrt{3}$),P(2,0),
∠CPO=60°,故过P点的切线的倾斜角为30°,
设M(ρ,θ)是过P点的圆C的切线上的任一点,
则在△PMO中,∠MOP=θ,∠OMP=30°-θ,∠OPM=150°,
由正弦定理得$\frac{OM}{sin∠OPM}=\frac{OP}{sin∠OMP}$,
∴$\frac{ρ}{sin150°}=\frac{2}{sin(30°-θ)}$,
∴直线l的极坐标方程为ρcos(θ+60°)=1.
(Ⅱ)∵直线ρ(cosθ+$\sqrt{3}$sinθ)+6=0,
∴直线的直角坐标方程为x+$\sqrt{3}$y+6=0,
设圆上的点M(1+2cosθ,$\sqrt{3}+2sinθ$),
点M到直线的距离:
d=$\frac{|1+2cosθ+\sqrt{3}(\sqrt{3}+2sinθ)+6|}{\sqrt{1+3}}$=$\frac{1}{2}[4sin(θ+\frac{π}{6})+10]$,
∴当θ=$\frac{π}{3}$时,点M到直线的距离取最大值$\frac{14}{2}=7$.此时M(2,2$\sqrt{3}$),
∴圆C上到直线ρ(cosθ+$\sqrt{3}$sinθ)+6=0的距离最大的点的直角坐标为(2,2$\sqrt{3}$).

点评 本题考查直线的极坐标方程的求法,考查圆上到直线的最大距离的点的直角坐标的求法,考查直角坐标方程、极坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若正实数a,b满足$\frac{1}{a+1}$+$\frac{1}{b+2}$=$\frac{1}{3}$,则ab+a+b的最小值为6$\sqrt{6}$+14.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{{\begin{array}{l}{x=\sqrt{3}sinφ}\\{y=cosφ}\end{array}}\right.$(φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C2的极坐标方程为$\sqrt{2}ρsin({θ-\frac{π}{4}})=1$.
(1)求曲线C1的普通方程与曲线C2的直角坐标方程;
(2)曲线C1与C2相交于P、Q两点,求过P、Q两点且面积最小的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若数列{an}的前n项和为Sn=2n+1-2,则数列a10=1024.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知椭圆的中心在原点,焦点在x轴上,离心率为$\frac{{\sqrt{3}}}{2}$,且经过点M(2,1).平行于OM的直线l在y轴上的截距为m(m≠0),l交椭圆于A,B两个不同点
(1)求椭圆的方程;
(2)求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow a=(-2,3,-5)$与向量$\overrightarrow b=(4,1,z)$垂直,则z的值是(  )
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{a}$=(3,-1),$\overrightarrow{b}$=(2,1),求:
(1)($\overrightarrow{a}$+2$\overrightarrow{b}$)•$\overrightarrow{b}$及|$\overrightarrow{a}$-$\overrightarrow{b}$|的值;
(2)$\overrightarrow{a}$与$\overrightarrow{b}$夹角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和Sn=an+n2-1,数列{bn}满足3nbn+1=(n+1)an+1-nan,且b1=3,a1=3.
(1)求数列{ an }和{bn}的通项an,bn
(2)设Tn为数列{bn}的前n项和,求Tn,并求满足Tn<7时n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.数列{an}的前n项和为Sn,满足2Sn+an=n2+2n+2,n∈N*,数列{bn}满足bn=an-n
(1)求数列{bn}的通项公式;
(2)求log3b3+log3b5+…+log3b2n+1

查看答案和解析>>

同步练习册答案