精英家教网 > 高中数学 > 题目详情
18.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{{\begin{array}{l}{x=\sqrt{3}sinφ}\\{y=cosφ}\end{array}}\right.$(φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C2的极坐标方程为$\sqrt{2}ρsin({θ-\frac{π}{4}})=1$.
(1)求曲线C1的普通方程与曲线C2的直角坐标方程;
(2)曲线C1与C2相交于P、Q两点,求过P、Q两点且面积最小的圆的标准方程.

分析 (1)曲线C1的参数方程消去参数φ,能求出曲线C1的普通方程;曲线C2的极坐标方程转化为ρsinθ-ρcosθ=1,由此能求出曲线C2的直角坐标方程.
(2)过P、Q两点且面积最小的圆是以线段PQ为直径的圆,由$\left\{{\begin{array}{l}{\frac{x^2}{3}+{y^2}=1}\\{y=x+1}\end{array}}\right.$,得2x2+3x=0,由此利用中点坐标公式求出圆心坐标,利用弦长公式求出半径,由此能求出过P、Q两点且面积最小的圆的标准方程.

解答 解:(1)∵曲线C1的参数方程为$\left\{{\begin{array}{l}{x=\sqrt{3}sinφ}\\{y=cosφ}\end{array}}\right.$(φ为参数),
∴由$\left\{{\begin{array}{l}{x=\sqrt{3}sinφ}\\{y=cosφ}\end{array}}\right.$消去参数φ,得曲线C1的普通方程为$\frac{x^2}{3}+{y^2}=1$,
∵曲线C2的极坐标方程为$\sqrt{2}ρsin({θ-\frac{π}{4}})=1$,
∴ρsinθ-ρcosθ=1,即y-x=1,即y=x+1.
∴曲线C2的直角坐标方程为y=x+1.
(2)过P、Q两点且面积最小的圆是以线段PQ为直径的圆,令P(x1,y1),Q(x2,y2).
由$\left\{{\begin{array}{l}{\frac{x^2}{3}+{y^2}=1}\\{y=x+1}\end{array}}\right.$,得2x2+3x=0,
所以${x_1}+{x_2}=-\frac{3}{2},{y_1}+{y_2}={x_1}+{x_2}+2=\frac{1}{2}$,∴圆心坐标为$({-\frac{3}{4},\frac{1}{4}})$,
又∵半径$r=\frac{1}{2}|{PQ}|=\frac{1}{2}\sqrt{({1+{k^2}})[{{{({{x_1}+{x_2}})}^2}-4{x_1}{x_2}}]}=\frac{{3\sqrt{2}}}{4}$,
∴过P、Q两点且面积最小的圆的标准方程为${({x+\frac{3}{4}})^2}+{({y-\frac{1}{4}})^2}=\frac{9}{8}$.

点评 本题考查曲线的普通方程、直角坐标方程的求法,考查圆的标准方程的法,考查中位坐标公式、弦长公式、直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若变量x,y满足约束条件$\left\{\begin{array}{l}y≤2x\\ y≥-2x,x≤3\end{array}$,则目标函数z=x-2y的最大值为15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$+$\overrightarrow{b}$|等于(  )
A.3B.2C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知△ABC中,∠BAC=60°,AB=4,AC=3,若E在线段BC上,且BE=2EC,求∠EAC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知随机变量X服从正态分布N(1,σ2),且P(X≤0)=0.1,则P(1≤X≤2)=(  )
A.0.4B.0.1C.0.6D.0.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.以直角坐标系xOy的坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t+4\sqrt{2}}\end{array}\right.$(t为参数),圆C的极坐标方程为ρ=2cos(θ+$\frac{π}{4}$).
(1)求圆C的直角坐标;
(2)试判断直线l与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在正四面体ABCD中,M,N分别是BC和DA的中点,则异面直线MN和CD所成角为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆C的参数方程为$\left\{\begin{array}{l}{x=1+2cosθ}\\{y=\sqrt{3}+2sinθ}\end{array}\right.$(θ为参数),若P是圆C与x轴的交点,以原点O为极点,x轴的正半轴为极轴建立极坐标系,设过点P的圆C的切线为l
(Ⅰ)求直线l的极坐标方程
(Ⅱ)求圆C上到直线ρ(cosθ+$\sqrt{3}$sinθ)+6=0的距离最大的点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow a=(2,-1,1)$,$\overrightarrow b=(λ,1,-1)$,若$\overrightarrow a$与$\overrightarrow b$的夹角为钝角,则λ的取值范围是{λ|λ<1且λ≠-2}.

查看答案和解析>>

同步练习册答案