精英家教网 > 高中数学 > 题目详情
17.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$+$\overrightarrow{b}$|等于(  )
A.3B.2C.$\sqrt{3}$D.1

分析 根据题意,由数量积的计算公式可得$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$||$\overrightarrow{b}$|cos60°=$\frac{1}{2}$,进而由向量数量积的运算性质可得|$\overrightarrow{a}$+$\overrightarrow{b}$|2=($\overrightarrow{a}$+$\overrightarrow{b}$)2=|$\overrightarrow{a}$|2+2$\overrightarrow{a}•\overrightarrow{b}$+|$\overrightarrow{b}$|2,计算即可得答案.

解答 解:根据题意,向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,
则$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|cos60°=$\frac{1}{2}$,
则有|$\overrightarrow{a}$+$\overrightarrow{b}$|2=($\overrightarrow{a}$+$\overrightarrow{b}$)2=|$\overrightarrow{a}$|2+2$\overrightarrow{a}•\overrightarrow{b}$+|$\overrightarrow{b}$|2=3,
则|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$;
故选:C.

点评 本题考查向量的数量积、向量的模的计算,关键是掌握向量的模的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知a∈R,“2a≥2”是|a|≥1的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{{3}^{x}-{x}^{2},x≥0}\\{f(x+2),x<0}\end{array}\right.$,则f(-9)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若正实数a,b满足$\frac{1}{a+1}$+$\frac{1}{b+2}$=$\frac{1}{3}$,则ab+a+b的最小值为6$\sqrt{6}$+14.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn
(1)求an及Sn
(2)求数列$\{\frac{1}{{a}_{n}{a}_{n+1}}\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.关于x、y的二元一次方程组$\left\{\begin{array}{l}x+5y=0\\ 2x+3y=4\end{array}\right.$的系数行列式D为(  )
A.$|{\begin{array}{l}0&5\\ 4&3\end{array}}|$B.$|{\begin{array}{l}1&0\\ 2&4\end{array}}|$C.$|{\begin{array}{l}1&5\\ 2&3\end{array}}|$D.$|{\begin{array}{l}6&0\\ 5&4\end{array}}|$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.数列1$\frac{1}{2}$,3$\frac{1}{4}$,5$\frac{1}{8}$,7$\frac{1}{16}$,…,(2n-1)+$\frac{1}{{2}^{n}}$,…的前n项和Sn的值等于n2+1-$\frac{1}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{{\begin{array}{l}{x=\sqrt{3}sinφ}\\{y=cosφ}\end{array}}\right.$(φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C2的极坐标方程为$\sqrt{2}ρsin({θ-\frac{π}{4}})=1$.
(1)求曲线C1的普通方程与曲线C2的直角坐标方程;
(2)曲线C1与C2相交于P、Q两点,求过P、Q两点且面积最小的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{a}$=(3,-1),$\overrightarrow{b}$=(2,1),求:
(1)($\overrightarrow{a}$+2$\overrightarrow{b}$)•$\overrightarrow{b}$及|$\overrightarrow{a}$-$\overrightarrow{b}$|的值;
(2)$\overrightarrow{a}$与$\overrightarrow{b}$夹角θ的余弦值.

查看答案和解析>>

同步练习册答案