精英家教网 > 高中数学 > 题目详情
15.已知在△ABC中,$cosC+(cosA-\sqrt{3}sinA)cosB=0$.
(1)求角B的大小;
(2)若a+c=1,求b的取值范围.

分析 (1)由cosC+(cosA-$\sqrt{3}$sinA)cosB=0,可得-cos(A+B)+cosAcosB-$\sqrt{3}$sinAcosB=0,可化为tanB=$\sqrt{3}$,即可得出.
(2)由a+c=1,利用基本不等式的性质化为ac≤$\frac{1}{4}$.由余弦定理可得:b2=a2+c2-2accosB=(a+c)2-3ac=1-3ac,利用基本不等式的性质即可得出.

解答 解:(1)cosC+(cosA-$\sqrt{3}$sinA)cosB=0,
∴-cos(A+B)+cosAcosB-$\sqrt{3}$sinAcosB=0,
化为sinAsinB-$\sqrt{3}$sinAcosB=0,
∵sinA≠0,
∴sinB-$\sqrt{3}$cosB=0,
∵cosB≠0,
∴tanB=$\sqrt{3}$,
∵B∈(0,π).
解得B=$\frac{π}{3}$.
(2)∵a+c=1,
∴1≥2 $\sqrt{ac}$,
化为ac≤$\frac{1}{4}$.
由余弦定理可得:b2=a2+c2-2accosB=(a+c)2-3ac=1-3ac≥$\frac{1}{4}$,当且仅当a=c=$\frac{1}{2}$时取等号.
∴b≥$\frac{1}{2}$.
又b<a+c=1.
∴b的取值范围是[$\frac{1}{2}$,1).

点评 本题考查了余弦定理、两角和差的正弦公式、诱导公式、三角函数的内角和定理、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.不等式$\left\{\begin{array}{l}y≤2x\\ y-\frac{1}{2}x≥0\\ x+y≤k\end{array}\right.$表示的区域面积大于或等于$\frac{3}{2}$,则实数k的取值范围是(  )
A.k≥1B.k≥2C.k≥3D.k≥4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知命题p:t=π,命题$q:\int_0^t{sinxdx=1}$,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=sin x+$\frac{1}{x}$+a,x∈[-5π,0)∪(0,5π].记函数f(x)的最大值为M,最小值为m,若M+m=20,则实数a的值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知p:-1<x<0,q:m-1<x<m+1,若p是q的充分条件,则m的取值范围是[-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=sin(πx+$\frac{π}{4}$)和函数g(x)=cos(πx+$\frac{π}{4}$)在区间[-$\frac{9}{4}$,$\frac{3}{4}$]上的图象交于A,B,C三点,则△ABC的面积是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{3\sqrt{2}}{4}$C.$\frac{5\sqrt{2}}{4}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a∈R,“2a≥2”是|a|≥1的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的首项为1,前n项和Sn与an之间满足an=$\frac{2{S}_{n}^{2}}{{2S}_{n}-1}$(n≥2,n∈N*
(1)求证:数列{$\frac{1}{{S}_{n}}$}是等差数列;
(2)求数列{an}的通项公式;
(3)设存在正整数k,使(1+S1)(1+S1)…(1+Sn)≥k$\sqrt{2n+1}$对于一切n∈N*都成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若正实数a,b满足$\frac{1}{a+1}$+$\frac{1}{b+2}$=$\frac{1}{3}$,则ab+a+b的最小值为6$\sqrt{6}$+14.

查看答案和解析>>

同步练习册答案