精英家教网 > 高中数学 > 题目详情
13.某地方政府欲将一块如图所示的直角梯形ABCD空地改建为健身娱乐广场,已知AD∥BC,AD⊥AB,AD=2BC=2$\sqrt{3}$百米,AB=3百米,广场入口P在AB上,且AP=2BP,根据规划,过点P铺设两条互相垂直的笔直小路PM、PN(小路宽度不计),点M、N分别在边AD、BC上(包含端点),△PAM区域拟建为跳舞健身广场,△PBN区域拟建为儿童乐园,其他区域铺设绿化草坪,设∠APM=θ.
(1)求绿化草坪面积的最大值;
(2)现拟将两条小路PN、PN进行不同风格的美化,小路PM的美化费用为每百米1万元,小路PN的美化费用为每百米2万元,试确定点M,N的位置,使得小路PM,PN的总美化费用最低,并求出最低费用.

分析 (1)用θ表示出AM,BN,得出草坪面积S关于tanθ的函数,利用函数单调性求出最大值;
(2)用θ表示出PM,PN,得出美化费用y关于θ的函数,利用换元法求出最小值.

解答 解:(1)∵AB=3,AP=2BP,∴AP=2,BP=1.
在Rt△PMA中,由$\frac{AM}{AP}=tanθ$,得AM=2tanθ,
∴${S_{△PMA}}=\frac{1}{2}•2•2tanθ=2tanθ$,
∵PM⊥PN,∴∠PNB=θ,
在Rt△PNB中,由$\frac{BP}{BN}=tanθ$,得$BN=\frac{1}{tanθ}$,
所以${S_{△PMA}}=\frac{1}{2}•1•\frac{1}{tanθ}=\frac{1}{2tanθ}$,
又S梯形ABCD=$\frac{1}{2}$($\sqrt{3}$+2$\sqrt{3}$)×3=$\frac{9\sqrt{3}}{2}$.
∴绿化草坪面积S=$\frac{9\sqrt{3}}{2}$-2tanθ-$\frac{1}{2tanθ}$,
连结PC,PD,则tanθ的最大值为$\frac{AD}{AP}$=$\sqrt{3}$,tanθ的最小值为$\frac{BP}{BC}=\frac{\sqrt{3}}{3}$,
∴$\frac{\sqrt{3}}{3}$≤tanθ$≤\sqrt{3}$,
设tanθ=t,f(t)=2t+$\frac{1}{2t}$,则f′(t)=2-$\frac{1}{2{t}^{2}}$,
∴当t∈[$\frac{\sqrt{3}}{3}$,$\sqrt{3}$]时,f′(t)>0,
∴f(t)在[$\frac{\sqrt{3}}{3}$,$\sqrt{3}$]上单调递增,
∴f(t)的最小值为f($\frac{\sqrt{3}}{3}$)=$\frac{7\sqrt{3}}{6}$,
∴S的最大值为$\frac{9\sqrt{3}}{2}$-$\frac{7\sqrt{3}}{6}$=$\frac{10\sqrt{3}}{3}$.
∴绿化草坪面积的最大值为$\frac{10\sqrt{3}}{3}$平方百米.
(2)在Rt△PMA中,由$\frac{AP}{PM}=cosθ$,得$PM=\frac{2}{cosθ}$,
在Rt△PNB中,由$\frac{BP}{PN}=sinθ$,得$PN=\frac{1}{sinθ}$,
∴总美化费用为$y=\frac{2}{cosθ}+\frac{2}{sinθ}=\frac{2(sinθ+cosθ)}{sinθcosθ}$,由(1)可知θ∈[$\frac{π}{6}$,$\frac{π}{3}$],
令t=sinθ+cosθ=$\sqrt{2}$sin(θ+$\frac{π}{4}$),则t∈[$\frac{\sqrt{3}+1}{2}$,$\sqrt{2}$],$sinθcosθ=\frac{{{t^2}-1}}{2}$,
∴$y=\frac{4t}{{{t^2}-1}}$,${y^'}=-\frac{{4{t^2}+4}}{{{{({t^2}-1)}^2}}}<0$,
∴$y=\frac{4t}{{{t^2}-1}}$在[$\frac{\sqrt{3}+1}{2}$,$\sqrt{2}$]上单调递减,
∴当t=$\sqrt{2}$时,美化费用y取得最小值4$\sqrt{2}$.
∴当$t=\sqrt{2}$,即$θ=\frac{π}{4}$时,即AM=2,BM=1时总美化费用最低为4$\sqrt{2}$万元.

点评 本题考查了函数解析式的求解,函数最值的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=sin x+$\frac{1}{x}$+a,x∈[-5π,0)∪(0,5π].记函数f(x)的最大值为M,最小值为m,若M+m=20,则实数a的值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的首项为1,前n项和Sn与an之间满足an=$\frac{2{S}_{n}^{2}}{{2S}_{n}-1}$(n≥2,n∈N*
(1)求证:数列{$\frac{1}{{S}_{n}}$}是等差数列;
(2)求数列{an}的通项公式;
(3)设存在正整数k,使(1+S1)(1+S1)…(1+Sn)≥k$\sqrt{2n+1}$对于一切n∈N*都成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角等于$\frac{π}{3}$,若|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,则|2$\overrightarrow{a}$-3$\overrightarrow{b}$|=$\sqrt{61}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{{3}^{x}-{x}^{2},x≥0}\\{f(x+2),x<0}\end{array}\right.$,则f(-9)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=e2x+1-2mx-$\frac{3}{2}$m,其中m∈R,e为自然对数底数.
(1)讨论函数f(x)的单调性;
(2)若不等式f(x)≥n对任意x∈R都成立,求m•n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若正实数a,b满足$\frac{1}{a+1}$+$\frac{1}{b+2}$=$\frac{1}{3}$,则ab+a+b的最小值为6$\sqrt{6}$+14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.关于x、y的二元一次方程组$\left\{\begin{array}{l}x+5y=0\\ 2x+3y=4\end{array}\right.$的系数行列式D为(  )
A.$|{\begin{array}{l}0&5\\ 4&3\end{array}}|$B.$|{\begin{array}{l}1&0\\ 2&4\end{array}}|$C.$|{\begin{array}{l}1&5\\ 2&3\end{array}}|$D.$|{\begin{array}{l}6&0\\ 5&4\end{array}}|$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若数列{an}的前n项和为Sn=2n+1-2,则数列a10=1024.

查看答案和解析>>

同步练习册答案