分析 用$\overrightarrow{OP},\overrightarrow{OQ}$表示出$\overrightarrow{OG}$,利用共线原理得出m,n的关系.
解答 证明:∵G是△OAB的重心,∴D是A的中点,
∴$\overrightarrow{OD}$=$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{2}$$\overrightarrow{OB}$,$\overrightarrow{OG}$=$\frac{2}{3}$$\overrightarrow{OD}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$,
∵OP=mOA,OQ=nOB,
∴$\overrightarrow{OA}$=$\frac{1}{m}\overrightarrow{OP}$,$\overrightarrow{OB}=\frac{1}{n}\overrightarrow{OQ}$,
∴$\overrightarrow{OG}$=$\frac{1}{3m}$$\overrightarrow{OP}$+$\frac{1}{3n}\overrightarrow{OQ}$,
∵P,Q,G三点共线,
∴$\frac{1}{3m}+\frac{1}{3n}$=1,即$\frac{1}{m}+\frac{1}{n}=3$.
点评 本题考查了平面向量在几何证明中的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2:3 | B. | 4:3 | C. | 3:1 | D. | 3:2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | -4 | C. | $-\frac{14}{3}$ | D. | -6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com