精英家教网 > 高中数学 > 题目详情
9.已知曲线C的极坐标方程为ρ2-2$\sqrt{2}$ρcos(θ+$\frac{π}{4}$)-2=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy.
(1)若直线l过原点,且被曲线C截得的弦长最小,求直线l的直角坐标方程;
(2)若M是曲线C上的动点,且点M的直角坐标为(x,y),求x+y的最大值.

分析 (1)曲线C的极坐标方程转化为ρ2-2ρcosθ+2ρsinθ-2=0,将$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$代入,能求出曲线的直角坐标方程为(x-1)2+(y+1)2=4,圆心C(1,-1),由直线l被曲线C截得的弦长最小,知直线l与OC垂直,由此能求出直线l的直角坐标方程.
(2)由M是曲线C上的动点,设$\left\{\begin{array}{l}{x=1+2cosα}\\{y=-1+2sinα}\end{array}\right.$,(α为参数),由此能出x+y的最大值.

解答 解:(1)∵曲线C的极坐标方程为ρ2-2$\sqrt{2}$ρcos(θ+$\frac{π}{4}$)-2=0,
∴ρ2-2ρcosθ+2ρsinθ-2=0,
将$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$代入,得曲线的直角坐标方程为(x-1)2+(y+1)2=4,
圆心C(1,-1),若直线l被曲线C截得的弦长最小,则直线l与OC垂直,
∴kl•kOC=-1,∵kOC=-1,∴kl=1,
∴直线l的直角坐标方程为y=x.
(2)∵M是曲线C上的动点,
∴设$\left\{\begin{array}{l}{x=1+2cosα}\\{y=-1+2sinα}\end{array}\right.$,(α为参数),
则x+y=2sinα+2cosα=2$\sqrt{2}$sin($α+\frac{π}{4}$),
当sin($α+\frac{π}{4}$)=1时,x+y取得最大值为2$\sqrt{2}$.

点评 本题考查直线的直角坐标方程的求法,考查代数式的最大值的求法,考查极坐标方程、直角坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.[示范高中]若一个数列的第m项等于这个数列的前m项的乘积,则称该数列为“m积数列”.若各项均为正数的等比数列{an}是一个“2017积数列”,且a1>1,则当其前n项的乘积取最大值时n的值为(  )
A.1008B.1009C.1007或1008D.1008或1009

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设等差数列{an}前n项和为Sn,且满足a2=2,S5=15;等比数列{bn}满足b2=4,b5=32.
(1)求数列{an}、{bn}的通项公式;
(2)求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知幂函数f(x)的图象过点(2,$\frac{1}{4}$),则函数g(x)=f(x)+$\frac{{x}^{2}}{4}$的最小值为(  )
A.1B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图点G是三角形ABO的重心,PQ是过G的分别交OA,OB于P,Q的一条线段,且OP=mOA,OQ=nOB,(m,n∈R).求证$\frac{1}{m}$+$\frac{1}{n}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,曲线C1的方程为$\frac{x^2}{3}+{y^2}=1$,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为$ρ=4sin(θ+\frac{π}{3})$,射线OM的极坐标方程为θ=α0(ρ≥0).
(1)写出曲线C1的极坐标方程和曲线C2的直角坐标方程;
(2)若射线OM平分曲线C2,且与曲线C1交于点A,曲线C1上的点B满足$∠AOB=\frac{π}{2}$,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.将参数方程$\left\{\begin{array}{l}{x=({2}^{t}+{2}^{-t})cosθ}\\{y=({2}^{t}-{2}^{-t})sinθ}\end{array}\right.$(θ 为参数,t 为常数)化为普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=lnx-$\frac{1}{2}$ax2+x.
(1)当a=2时,f(x)≤k恒成立,求k的取值范围;
(2)方程mf(x)=(1-$\frac{am}{2}$)x2有唯一实数解,求正数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$满足$|{\overrightarrow a}|=|{\overrightarrow b}|=1,\overrightarrow a•\overrightarrow b=-\frac{1}{2},\left?{\overrightarrow a-\overrightarrow c,\overrightarrow b-\overrightarrow c}\right>={60^0}$,则$\overrightarrow c$的模长的最大值为(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

同步练习册答案