精英家教网 > 高中数学 > 题目详情
5.已知幂函数f(x)的图象过点(2,$\frac{1}{4}$),则函数g(x)=f(x)+$\frac{{x}^{2}}{4}$的最小值为(  )
A.1B.2C.4D.6

分析 利用待定系数法求出幂函数f(x)的解析式,再利用基本不等式求函数g(x)的最小值.

解答 解:设幂函数f(x)=xα的图象过点(2,$\frac{1}{4}$),
∴2α=$\frac{1}{4}$,解得α=-2;
∴函数f(x)=x-2,其中x≠0;
∴函数g(x)=f(x)+$\frac{{x}^{2}}{4}$
=x-2+$\frac{{x}^{2}}{4}$
=$\frac{1}{{x}^{2}}$+$\frac{{x}^{2}}{4}$≥2$\sqrt{\frac{1}{{x}^{2}}•\frac{{x}^{2}}{4}}$=1,
当且仅当x=±2时,g(x)取得最小值1.
故选:A.

点评 本题考查了求幂函数的解析式以及函数最小值的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知数列{an}的前n项和为Sn满足a1=1,log2an=log2an+1-1,则$\frac{{{S_{20}}-{S_{17}}}}{{{a_{20}}-{a_{17}}}}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在极坐标系中,已知曲线C:ρ=asinθ(a>0),若直线l:θ=$\frac{π}{3}$被曲线C截得的弦长为$\sqrt{3}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在三角形ABC中,角A,B,C所对的边分别是a,b,c,若2bcosB=acosC+ccosA
(1)求角B的大小;
(2)若线段BC上存在一点D,使得AD=2,且AC=$\sqrt{6}$,CD=$\sqrt{3}$-1,求S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知定义在(0,+∞)上的函数f(x)满足f(x)=f($\frac{1}{x}$),且当x∈[1,+∞)时,f(x)=ex-1+lnx+a(x-$\frac{1}{x}$)-t,t∈R.
(Ⅰ)若a≥0,试讨论函数f(x)的零点个数;
(Ⅱ)若t=1,求证:当a≥-1时,f(x)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若sin($\frac{π}{6}$-θ)=$\frac{\sqrt{3}}{3}$,则sin($\frac{7π}{6}$-θ)=-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知曲线C的极坐标方程为ρ2-2$\sqrt{2}$ρcos(θ+$\frac{π}{4}$)-2=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy.
(1)若直线l过原点,且被曲线C截得的弦长最小,求直线l的直角坐标方程;
(2)若M是曲线C上的动点,且点M的直角坐标为(x,y),求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.直线$\left\{\begin{array}{l}x=\sqrt{2}-2t\\ y=\sqrt{3}+4t\end{array}\right.$(t为参数)的倾角是(  )
A.$arctan(-\frac{1}{2})$B.arctan(-2)C.$π-arctan\frac{1}{2}$D.π-arctan2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.复数$\frac{1}{i-2}$的虚部为(  )
A.$\frac{1}{5}$B.$\frac{1}{5}i$C.$-\frac{1}{5}$D.$-\frac{1}{5}i$

查看答案和解析>>

同步练习册答案