精英家教网 > 高中数学 > 题目详情
6.直线$\left\{\begin{array}{l}x=\sqrt{2}-2t\\ y=\sqrt{3}+4t\end{array}\right.$(t为参数)的倾角是(  )
A.$arctan(-\frac{1}{2})$B.arctan(-2)C.$π-arctan\frac{1}{2}$D.π-arctan2

分析 直线的参数方程消去参数t,能求出直线的普通方程,由此能求出直线的斜率,从而能求出直线的倾斜角.

解答 解:直线$\left\{\begin{array}{l}x=\sqrt{2}-2t\\ y=\sqrt{3}+4t\end{array}\right.$(t为参数)消去参数t,
得直线的普通方程为2x+y-$\sqrt{3}-2\sqrt{2}$=0,
∴直线的斜率k=-2,
∴直线的倾斜角α=π-arctan2.
故选:D.

点评 本题考查参数方程化为普通方程的求法,考查直线的倾斜角的求法,考查直角坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某创业投资公司拟投资某种新能源产品,研发小组经过初步论证,估计能获得10万元到100万元的投资效益,现准备制定一个对研发小组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,奖金不超过投资收益的20%且不超过9万元,设奖励y是投资收益x的模型为y=f(x).
(1)试验证函数y=$\frac{x}{150}$+1是否符合函数x模型请说明理由;
(2)若公司投资公司采用函数模型f(x)=$\frac{10x-3a}{x+2}$,试确定最小的正整数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知幂函数f(x)的图象过点(2,$\frac{1}{4}$),则函数g(x)=f(x)+$\frac{{x}^{2}}{4}$的最小值为(  )
A.1B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,曲线C1的方程为$\frac{x^2}{3}+{y^2}=1$,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为$ρ=4sin(θ+\frac{π}{3})$,射线OM的极坐标方程为θ=α0(ρ≥0).
(1)写出曲线C1的极坐标方程和曲线C2的直角坐标方程;
(2)若射线OM平分曲线C2,且与曲线C1交于点A,曲线C1上的点B满足$∠AOB=\frac{π}{2}$,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.将参数方程$\left\{\begin{array}{l}{x=({2}^{t}+{2}^{-t})cosθ}\\{y=({2}^{t}-{2}^{-t})sinθ}\end{array}\right.$(θ 为参数,t 为常数)化为普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知首项都是1的两个数列{an},{bn}(bn≠0,n∈N*),满足$\frac{{a}_{n}}{{b}_{n}}$-$\frac{{a}_{n+1}}{{b}_{n+1}}$=-2.
(1)令cn=$\frac{{a}_{n}}{{b}_{n}}$,求数列{cn}的通项公式;
(2)若bn=3n-1,求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=lnx-$\frac{1}{2}$ax2+x.
(1)当a=2时,f(x)≤k恒成立,求k的取值范围;
(2)方程mf(x)=(1-$\frac{am}{2}$)x2有唯一实数解,求正数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.空间三点的坐标为A(1,5,-2),B(2,4,1),C(3,3,p+2),若A,B,C三点共线,则p=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知在△ABC中,三角A,B,C的对边分别为a,b,c,其满足(a-3b)cosC=c(3cosB-cosA),AF=2FC,则$\frac{AB}{BF}$的取值范围为(2,+∞).

查看答案和解析>>

同步练习册答案