分析 由正弦定理,两角和的正弦函数公式,三角形内角和定理,诱导公式化简已知可求b=3a,结合AF=2FC,可得CF=a,AF=2a,由余弦定理,三角函数恒等变换的应用可得:$\frac{AB}{BF}$=$\sqrt{\frac{1}{si{n}^{2}\frac{C}{2}}+3}$,结合范围0$<\frac{C}{2}<\frac{π}{2}$,即可计算得解.
解答
解:∵(a-3b)cosC=c(3cosB-cosA),
∴sinAcosC-3sinBcosC=3sinCcosB-sinCcosA,
∴sin(A+C)=3sin(B+C),
∴sinB=3sinA,可得:b=3a,
∵如右图所示,AF=2FC,
∴CF=a,AF=2a,
∴则由余弦定理可得:$\frac{AB}{BF}$=$\sqrt{\frac{{a}^{2}+(3a)^{2}-2×a×3a×cosC}{{a}^{2}+{a}^{2}-2a•a•cosC}}$=$\sqrt{\frac{5-3cosC}{1-cosC}}$
=$\sqrt{\frac{5-3(1-2si{n}^{2}\frac{C}{2})}{2si{n}^{2}\frac{C}{2}}}$=$\sqrt{\frac{2+6si{n}^{2}\frac{C}{2}}{2si{n}^{2}\frac{C}{2}}}$=$\sqrt{\frac{1}{si{n}^{2}\frac{C}{2}}+3}$,
∵0<C<π,0$<\frac{C}{2}<\frac{π}{2}$,$\frac{1}{si{n}^{2}\frac{C}{2}}$∈(1,+∞),
∴$\frac{AB}{BF}$=$\sqrt{\frac{1}{si{n}^{2}\frac{C}{2}}+3}$∈(2,+∞).
故答案为:(2,+∞).
点评 本题主要考查了正弦定理,两角和的正弦函数公式,三角形内角和定理,诱导公式,余弦定理,三角函数恒等变换的应用在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $arctan(-\frac{1}{2})$ | B. | arctan(-2) | C. | $π-arctan\frac{1}{2}$ | D. | π-arctan2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{1}{5}i$ | C. | $-\frac{1}{5}$ | D. | $-\frac{1}{5}i$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}-1$ | B. | $\sqrt{2}$ | C. | $\sqrt{2}+1$ | D. | $\sqrt{2}+2$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3或1 | B. | -1或3 | C. | ±3 | D. | ±1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x2cos2x>1 | B. | $\frac{{x}^{4}}{si{n}^{2}x}$>$\frac{3}{4}$ | C. | x2+cos2x>1 | D. | x4-sin2x>$\frac{3}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com