精英家教网 > 高中数学 > 题目详情
18.设函数f(x)=lnx-$\frac{1}{2}$ax2+x.
(1)当a=2时,f(x)≤k恒成立,求k的取值范围;
(2)方程mf(x)=(1-$\frac{am}{2}$)x2有唯一实数解,求正数m的值.

分析 (1)求出函数的导数,求出函数的单调区间,求出函数的最大值,从而求出k的范围即可;
(2)lnx+x=0时,不合题意,当lnx+x≠0时,m=$\frac{{x}^{2}}{lnx+x}$有唯一解,此时x>x0,记h(x)=$\frac{{x}^{2}}{lnx+x}$,根据函数的单调性求出m的值即可.

解答 解:(1)a=2时,f(x)=lnx-x2+x,
f(x)的定义域是(0,+∞),
f′(x)=$\frac{1}{x}$-2x+1=$\frac{-{2x}^{2}+x+1}{x}$=$\frac{-(2x+1)(x-1)}{x}$,
令f′(x)>0,解得:0<x<1,令f′(x)<0,解得:x>1,
故f(x)在(0,1)递增,在(1,+∞)递减,
故f(x)max=f(1)=0,
若f(x)≤k恒成立,
则k≥0;
(2)方程mf(x)=(1-$\frac{am}{2}$)x2有唯一实数解,
即m(lnx+x)=x2有唯一实数解,
当lnx+x=0时,显然不成立,设lnx+x=0的根为x0∈($\frac{1}{e}$,1)
当lnx+x≠0时,m=$\frac{{x}^{2}}{lnx+x}$有唯一解,此时x>x0
记h(x)=$\frac{{x}^{2}}{lnx+x}$,
h′(x)=$\frac{x(x-1)+2xlnx}{{(lnx+x)}^{2}}$,
当x∈(0,1)时,x(x-1)<0,2xlnx<0,h′(x)<0,
当x∈(1,+∞)时,x(x-1)>0,2xlnx>0,h'(x)>0,
∴h(x)在(x0,1)上递减,(1,+∞)上递增.
∴h(x)min=h(1)=1,
当x∈(x0,1)时,h(x)∈(1,+∞),
当x∈(1,+∞)时,h(x)∈(1,+∞),
要使m=$\frac{{x}^{2}}{lnx+x}$有唯一解,应有m=h(1)=1,
∴m=1.

点评 本题考查利用导数研究函数的单调性,考查函数的最值,考查分离参数法的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在极坐标系中,已知曲线C:ρ=asinθ(a>0),若直线l:θ=$\frac{π}{3}$被曲线C截得的弦长为$\sqrt{3}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知曲线C的极坐标方程为ρ2-2$\sqrt{2}$ρcos(θ+$\frac{π}{4}$)-2=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy.
(1)若直线l过原点,且被曲线C截得的弦长最小,求直线l的直角坐标方程;
(2)若M是曲线C上的动点,且点M的直角坐标为(x,y),求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.直线$\left\{\begin{array}{l}x=\sqrt{2}-2t\\ y=\sqrt{3}+4t\end{array}\right.$(t为参数)的倾角是(  )
A.$arctan(-\frac{1}{2})$B.arctan(-2)C.$π-arctan\frac{1}{2}$D.π-arctan2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,m),且|$\overrightarrow{a}+\overrightarrow{b}$|=|$\overrightarrow{a}-\overrightarrow{b}$|,则m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆${C_1}:\frac{x^2}{8}+\frac{y^2}{4}=1$的左右焦点分别为F1,F2,直线l1过点F1,且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M.
(1)求点M的轨迹C2的方程;
(2)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$.
(Ⅰ)若$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,求$|{\overrightarrow a+2\overrightarrow b}|$;
(Ⅱ)若$(2\overrightarrow a-\overrightarrow b)•(3\overrightarrow a+\overrightarrow b)=3$,求$\overrightarrow a$与$\overrightarrow b$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.复数$\frac{1}{i-2}$的虚部为(  )
A.$\frac{1}{5}$B.$\frac{1}{5}i$C.$-\frac{1}{5}$D.$-\frac{1}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知椭圆$\frac{y^2}{4}+\frac{x^2}{3}=1$与抛物线y=ax2(a>0)有相同的焦点,则抛物线的焦点到准线的距离为2.

查看答案和解析>>

同步练习册答案