分析 (1)由x=ρcosθ,y=ρsinθ,能求出曲线C1的极坐标方程,曲线C2的极坐标方程转化为ρ2=2ρsinθ+2$\sqrt{3}ρcosθ$,由x=ρcosθ,y=ρsinθ,ρ2=x2+y2,能求出曲线C2的直角坐标方程.
(2)曲线C2是圆心为$(\sqrt{3},\;\;\;1)$,半径为2的圆,射线OM的极坐标方程为$θ=\frac{π}{6}(ρ≥0)$,代入${ρ^2}=\frac{3}{{1+2{{sin}^2}θ}}$,得$ρ_A^2=2$.由$∠AOB=\frac{π}{2}$,得$ρ_B^2=\frac{6}{5}$,由此能求出|AB|.
解答 【选修4-4:坐标系与参数方程】
解:(1)∵曲线C1的方程为$\frac{x^2}{3}+{y^2}=1$,
x=ρcosθ,y=ρsinθ,ρ2=x2+y2,
∴曲线C1的极坐标方程为${ρ^2}=\frac{3}{{1+2{{sin}^2}θ}}$,
∵曲线C2的极坐标方程为$ρ=4sin(θ+\frac{π}{3})$,
即$ρ=4sinθcos\frac{π}{3}+4cosθsin\frac{π}{3}$,
即ρ2=2ρsinθ+2$\sqrt{3}ρcosθ$,
∵x=ρcosθ,y=ρsinθ,ρ2=x2+y2,
∴${x}^{2}+{y}^{2}=2y+2\sqrt{3}x$,
∴曲线C2的直角坐标方程为${(x-\sqrt{3})^2}+{(y-1)^2}=4$.
(2)曲线C2是圆心为$(\sqrt{3},\;\;\;1)$,半径为2的圆,
∴射线OM的极坐标方程为$θ=\frac{π}{6}(ρ≥0)$,
代入${ρ^2}=\frac{3}{{1+2{{sin}^2}θ}}$,可得$ρ_A^2=2$.
又$∠AOB=\frac{π}{2}$,∴$ρ_B^2=\frac{6}{5}$,
∴$|AB|=\sqrt{|OA{|^2}+|OB{|^2}}=\sqrt{ρ_A^2+ρ_B^2}=\frac{{4\sqrt{5}}}{5}$.
点评 本题考查曲线的极坐标方程、直角坐标方程的求法,考查弦长的求法,考查极坐标方程、直角坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{5}$ | B. | $\frac{1}{5}$ | C. | 5 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $arctan(-\frac{1}{2})$ | B. | arctan(-2) | C. | $π-arctan\frac{1}{2}$ | D. | π-arctan2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}-1$ | B. | $\sqrt{2}$ | C. | $\sqrt{2}+1$ | D. | $\sqrt{2}+2$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com