精英家教网 > 高中数学 > 题目详情
2.若sin($\frac{π}{6}$-θ)=$\frac{\sqrt{3}}{3}$,则sin($\frac{7π}{6}$-θ)=-$\frac{\sqrt{3}}{3}$.

分析 由已知,利用诱导公式化简所求即可得解.

解答 解:∵sin($\frac{π}{6}$-θ)=$\frac{\sqrt{3}}{3}$,
∴sin($\frac{7π}{6}$-θ)=sin[π-($θ-\frac{π}{6}$)]=-sin($\frac{π}{6}$-θ)=-$\frac{\sqrt{3}}{3}$.
故答案为:-$\frac{\sqrt{3}}{3}$.

点评 本题主要考查了诱导公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.为了解甲、乙两校高三年级学生某次期末联考地理成绩情况,从这两学校中分别随机抽取30名高三年级的地理成绩(百分制)作为样本,样本数据的茎叶图如图所示:

(1)若乙校高三年级每位学生被抽取的概率为0.15,求乙校高三年级学生总人数;
(2)根据茎叶图,分析甲、乙两校高三年级学生在这次联考中哪个学校地理成绩较好?(不要求计算,要求写出理由);
(3)从样本中甲、乙两校高三年级学生地理成绩不及格(低于60分为不及格)的学生中随机抽取2人,求至少抽到一名乙校学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.底面边长和侧棱长均为2的正四棱锥的体积为$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,D是边BC的中点,|$\overrightarrow{AC}$|=3,|$\overrightarrow{AB}$|=2,则$\overrightarrow{AD}$•$\overrightarrow{BC}$=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知幂函数f(x)的图象过点(2,$\frac{1}{4}$),则函数g(x)=f(x)+$\frac{{x}^{2}}{4}$的最小值为(  )
A.1B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知三棱锥P-ABC,PA=BC=5,PB=AC=$\sqrt{34}$,PC=AB=$\sqrt{41}$,则此三棱锥的体积是160.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,曲线C1的方程为$\frac{x^2}{3}+{y^2}=1$,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为$ρ=4sin(θ+\frac{π}{3})$,射线OM的极坐标方程为θ=α0(ρ≥0).
(1)写出曲线C1的极坐标方程和曲线C2的直角坐标方程;
(2)若射线OM平分曲线C2,且与曲线C1交于点A,曲线C1上的点B满足$∠AOB=\frac{π}{2}$,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知首项都是1的两个数列{an},{bn}(bn≠0,n∈N*),满足$\frac{{a}_{n}}{{b}_{n}}$-$\frac{{a}_{n+1}}{{b}_{n+1}}$=-2.
(1)令cn=$\frac{{a}_{n}}{{b}_{n}}$,求数列{cn}的通项公式;
(2)若bn=3n-1,求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知P为曲线$C:\left\{\begin{array}{l}x=3cosθ\\ y=4sinθ\end{array}\right.$(θ为参数,0≤θ≤π)上一点,O为坐标原点,若直线OP的倾斜角为$\frac{π}{4}$,则P点的坐标为$({\frac{12}{5},\frac{12}{5}})$.

查看答案和解析>>

同步练习册答案