精英家教网 > 高中数学 > 题目详情
12.已知P为曲线$C:\left\{\begin{array}{l}x=3cosθ\\ y=4sinθ\end{array}\right.$(θ为参数,0≤θ≤π)上一点,O为坐标原点,若直线OP的倾斜角为$\frac{π}{4}$,则P点的坐标为$({\frac{12}{5},\frac{12}{5}})$.

分析 设P(3cosθ,4sinθ),由直线OP的倾斜角为$\frac{π}{4}$,得tan$\frac{π}{4}$=$\frac{4sinθ}{3cosθ}$=1,0≤θ≤π,从而sinθ=$\frac{3}{4}cosθ$>0,由sin2θ+cos2θ=$\frac{9}{16}co{s}^{2}θ+co{s}^{2}θ$=1,得到sinθ=$\frac{3}{5}$,cosθ=$\frac{4}{5}$,由此能求出P点坐标.

解答 解:∵P为曲线$C:\left\{\begin{array}{l}x=3cosθ\\ y=4sinθ\end{array}\right.$(θ为参数,0≤θ≤π)上一点,O为坐标原点,
∴P(3cosθ,4sinθ),
∵直线OP的倾斜角为$\frac{π}{4}$,
∴tan$\frac{π}{4}$=$\frac{4sinθ}{3cosθ}$=1,0≤θ≤π,即sinθ=$\frac{3}{4}cosθ$>0,
∵sin2θ+cos2θ=$\frac{9}{16}co{s}^{2}θ+co{s}^{2}θ$=1,
解得sinθ=$\frac{3}{5}$,cosθ=$\frac{4}{5}$,∴P$({\frac{12}{5},\frac{12}{5}})$.
故答案为:$({\frac{12}{5},\frac{12}{5}})$.

点评 本题考查点的坐标的求法,考查参数方程、同角三角函数关系式、直线的斜率公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若sin($\frac{π}{6}$-θ)=$\frac{\sqrt{3}}{3}$,则sin($\frac{7π}{6}$-θ)=-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆${C_1}:\frac{x^2}{8}+\frac{y^2}{4}=1$的左右焦点分别为F1,F2,直线l1过点F1,且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M.
(1)求点M的轨迹C2的方程;
(2)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若$z=\frac{1-i}{1+i}$(i为虚数单位)的共轭复数为(  )
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.复数$\frac{1}{i-2}$的虚部为(  )
A.$\frac{1}{5}$B.$\frac{1}{5}i$C.$-\frac{1}{5}$D.$-\frac{1}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知定义在R上的函数f(x)满足:y=f(x-1)的图象关于(1,0)点对称,且当x≥0时恒有f(x+2)=f(x),当x∈[0,2)时,f(x)=ex-1,则f(2016)+f(-2017)=(  )(其中e为自然对数的底)
A.1-eB.e-1C.-1-eD.e+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.过双曲线的一个焦点F2作垂直于实轴的弦PQ,F1是另一焦点,若△PF1Q是等腰直角三角形,则双曲线的离心率e等于(  )
A.$\sqrt{2}-1$B.$\sqrt{2}$C.$\sqrt{2}+1$D.$\sqrt{2}+2$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数y=f(x)的定义域为D,若对于任意x1,x2∈D,满足x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点Q为函数y(x)=f(x)图象的对称中心,研究并利用函数f(x)=x3-3x2-sin(πx)的对称中心,可得f($\frac{1}{2017}$)+f($\frac{2}{2017}$)+…+f($\frac{4033}{2017}$)=-8066.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax+b(a>0,a≠1)满足f(x+y)=f(x)•f(y)且f(3)=8.
(1)求a,b的值.
(2)若方程|f(x)-1|=m的有两个不同的解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案