分析 (1)由2bcosB=acosC+ccosA,利用正弦定理与两角和的正弦公式算出2sinBcosB=sin(A+C),再根据诱导公式化简可得cosB=$\frac{1}{2}$,结合B∈(0,π)可得角B的大小.
(2)由余弦定理求得cosC的值,可得C的值,利用三角形内角和公式求得A的值,再利用正弦定理求得AB的值,从而求得S△ABC=$\frac{1}{2}$•AB•AC•sinA 的值.
解答 解:(1)∵2bcosB=acosC+ccosA,
∴根据正弦定理,可得2sinBcosB=sinAcosC+sinCcosA,
即2sinBcosB=sin(A+C).
又∵△ABC中,sin(A+C)=sin(180°-B)=sinB>0
∴2sinBcosB=sinB,两边约去sinB得2cosB=1,即cosB=$\frac{1}{2}$,
∵B∈(0,π),
∴B=$\frac{π}{3}$.
(2)∵在△ACD中,AD=2,且AC=$\sqrt{6}$,CD=$\sqrt{3}$-1,
∴由余弦定理可得:cosC=$\frac{(\sqrt{6})^{2}+(\sqrt{3}-1)^{2}-4}{2\sqrt{6}×(\sqrt{3}-1)}$=$\frac{\sqrt{2}}{2}$,
∴C=$\frac{π}{4}$,
∴A=π-B-C=$\frac{5π}{12}$,
由$\frac{AC}{sinB}=\frac{AB}{sinC}$,可得$\frac{\sqrt{6}}{sin\frac{π}{3}}=\frac{AB}{sin\frac{π}{4}}$,
∴AB=2,
∴S△ABC=$\frac{1}{2}$•AB•AC•sinA=$\frac{1}{2}$•2•$\sqrt{6}$•sin($\frac{π}{4}+\frac{π}{6}$)=$\sqrt{6}$•(sin$\frac{π}{4}$cos$\frac{π}{6}$+cos$\frac{π}{4}$sin$\frac{π}{6}$)=$\sqrt{6}$•($\frac{\sqrt{6}}{4}+\frac{\sqrt{2}}{4}$)=$\frac{3+\sqrt{3}}{2}$.
点评 本题主要考查正弦定理、余弦定理的应用,三角形内角和公式,两角和的正弦公式的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | C${\;}_{5}^{3}$($\frac{1}{4}$)3($\frac{3}{4}$)2 | B. | C${\;}_{5}^{3}$($\frac{1}{4}$)2($\frac{3}{4}$)3 | C. | C${\;}_{4}^{2}$($\frac{1}{4}$)3($\frac{3}{4}$)2 | D. | C${\;}_{4}^{2}$($\frac{1}{4}$)2($\frac{3}{4}$)3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com