精英家教网 > 高中数学 > 题目详情
8.设等差数列{an}前n项和为Sn,且满足a2=2,S5=15;等比数列{bn}满足b2=4,b5=32.
(1)求数列{an}、{bn}的通项公式;
(2)求数列{anbn}的前n项和Tn

分析 (1)设等差数列{an}的公差为d,等比数列{bn}的公比为q,运用等差数列和等比数列的通项公式和求和公式,得到方程组,解方程可得首项和公差、公比,即可得到所求通项公式;
(2)求得anbn=n•2n,运用数列的求和方法:错位相减法,结合等比数列的求和公式,化简整理即可得到所求和.

解答 解:(1)设等差数列{an}的公差为d,
a2=2,S5=15,可得a1+d=2,5a1+$\frac{5×4}{2}$d=15,
解得a1=d=1,
则an=1+(n-1)=n;
设等比数列{bn}的公比为q,
由b2=4,b5=32,可得b1q=4,b1q4=32,
解得b1=q=2,
可得bn=b1qn-1=2n
(2)anbn=n•2n
前n项和Tn=1•2+2•22+…+n•2n
2Tn=1•22+2•23+…+n•2n+1
相减可得,-Tn=2+22+…+2n-n•2n+1
=$\frac{2(1-{2}^{n})}{1-2}$-n•2n+1
化简可得,Tn=(n-1)•2n+1+2.

点评 本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的求和方法:错位相减法,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合.曲线${C_1}:\left\{\begin{array}{l}x=1+\sqrt{2}t\\ y=-\sqrt{2}t\end{array}\right.$(t为参数),曲线C2的极坐标方程为ρ=ρcos2θ+8cosθ.
(Ⅰ)将曲线C1,C2分别化为普通方程、直角坐标方程,并说明表示什么曲线;
(Ⅱ)设F(1,0),曲线C1与曲线C2相交于不同的两点A,B,求|AF|+|BF|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.为了检测某种产品的质量(单位:千克),抽取了一个容量为N的样本,整理得到的数据作出了频率分布表和频率分布直方图如图:
 分组 频数 频率
[17.5,20) 10 0.05
[20,225) 50 0.25
[22.5,25) a b
[25,27.5) 40 c
[27.5,30] 20 0.10
 合计 N 1
(Ⅰ)求出表中N及a,b,c的值;
(Ⅱ)求频率分布直方图中d的值;
(Ⅲ)从该产品中随机抽取一件,试估计这件产品的质量少于25千克的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在极坐标系中,已知曲线C:ρ=asinθ(a>0),若直线l:θ=$\frac{π}{3}$被曲线C截得的弦长为$\sqrt{3}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知an=2n-1(n∈N*),则$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{9}{a}_{10}}$=$\frac{9}{19}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在三角形ABC中,角A,B,C所对的边分别是a,b,c,若2bcosB=acosC+ccosA
(1)求角B的大小;
(2)若线段BC上存在一点D,使得AD=2,且AC=$\sqrt{6}$,CD=$\sqrt{3}$-1,求S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知定义在(0,+∞)上的函数f(x)满足f(x)=f($\frac{1}{x}$),且当x∈[1,+∞)时,f(x)=ex-1+lnx+a(x-$\frac{1}{x}$)-t,t∈R.
(Ⅰ)若a≥0,试讨论函数f(x)的零点个数;
(Ⅱ)若t=1,求证:当a≥-1时,f(x)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知曲线C的极坐标方程为ρ2-2$\sqrt{2}$ρcos(θ+$\frac{π}{4}$)-2=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy.
(1)若直线l过原点,且被曲线C截得的弦长最小,求直线l的直角坐标方程;
(2)若M是曲线C上的动点,且点M的直角坐标为(x,y),求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$.
(Ⅰ)若$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,求$|{\overrightarrow a+2\overrightarrow b}|$;
(Ⅱ)若$(2\overrightarrow a-\overrightarrow b)•(3\overrightarrow a+\overrightarrow b)=3$,求$\overrightarrow a$与$\overrightarrow b$的夹角.

查看答案和解析>>

同步练习册答案