精英家教网 > 高中数学 > 题目详情
2.已知a,b,c为△ABC的三个角A,B,C所对的边,若3bcosC=c(1-3cosB),则$\frac{c}{a}$=(  )
A.2:3B.4:3C.3:1D.3:2

分析 由正弦定理,两角和的正弦函数公式,三角形内角和定理,诱导公式化简已知可得3sinA=sinC,进而利用正弦定理可求$\frac{c}{a}$的值.

解答 解:∵3bcosC=c(1-3cosB),
∴由正弦定理可得:3sinBcosC=sinC-3sinCcosB,
∴3sinBcosC+3sinCcosB=3sin(B+C)=3sinA=sinC,
∴3a=c,即:$\frac{c}{a}$=3:1.
故选:C.

点评 本题主要考查了正弦定理,两角和的正弦函数公式,三角形内角和定理,诱导公式在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知 $\frac{π}{2}<α<β<\frac{3π}{4},cos({α-β})=\frac{12}{13},sin({α+β})=-\frac{3}{5}$,则sin2α=(  )
A.$-\frac{16}{65}$B.$\frac{56}{65}$C.$\frac{16}{65}$D.$-\frac{56}{65}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知△ABC是边长为4的等边三角形,P为平面ABC内一点,则$\overrightarrow{PA}•(\overrightarrow{PB}+\overrightarrow{PC})$的最小值是(  )
A.-2B.$-\frac{3}{2}$C.-3D.-6 

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列函数中,不满足f(3x)=3f(x)的是(  )
A.f(x)=|x|B.f(x)=-xC.f(x)=x-|x|D.f(x)=x+3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在直角坐标系中xOy中,已知曲线C1:$\left\{\begin{array}{l}x=1+\sqrt{2}cosα\\ y=1+\sqrt{2}sinα\end{array}\right.(α$为参数),以坐标原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C2:ρ=$\frac{a}{{cos(θ-\frac{π}{4})}}$,若射线θ=ϕ,θ=ϕ+$\frac{π}{4}$,θ=Φ-$\frac{π}{4}$,θ=Φ+$\frac{π}{2}$与曲线C1分别交于(异于极点O)的四点A,B,C,D
(1)若曲线C1关于曲线C2对称,求a的值,并求曲线C1的极坐标方程;
(2)求|OA|•|OC|+|OB|•|OD|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.[示范高中]若一个数列的第m项等于这个数列的前m项的乘积,则称该数列为“m积数列”.若各项均为正数的等比数列{an}是一个“2017积数列”,且a1>1,则当其前n项的乘积取最大值时n的值为(  )
A.1008B.1009C.1007或1008D.1008或1009

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2-(m+1)x+m,g(x)=-(m+4)x-4+m,m∈R.
(1)比较f(x)与g(x)的大小;
(2)解不等式f(x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|(x+2m)(x-m+4)<0},其中m∈R,集合B={x|$\frac{1-x}{x+2}$>0}.
(1)若B⊆A,求实数m的取值范围;
(2)若A∩B=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图点G是三角形ABO的重心,PQ是过G的分别交OA,OB于P,Q的一条线段,且OP=mOA,OQ=nOB,(m,n∈R).求证$\frac{1}{m}$+$\frac{1}{n}$=3.

查看答案和解析>>

同步练习册答案