精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=x2-(m+1)x+m,g(x)=-(m+4)x-4+m,m∈R.
(1)比较f(x)与g(x)的大小;
(2)解不等式f(x)≤0.

分析 (1)根据题意,用作差法分析可得f(x)-g(x)的符号,即可得答案;
(2)根据题意,将不等式f(x)≤0变形为x2-(m+1)x+m≤0,即 (x-m)(x-1)≤0,讨论m的取值,即可得不等式f(x)≤0的解集.

解答 解:(1)由于f(x)-g(x)=x2-(m+1)x+m+(m+4)x+4-m
=x2+3x+4=${(x+\frac{3}{2})^2}+\frac{7}{4}$>0,
∴f(x)>g(x).
(2)不等式f(x)≤0,即x2-(m+1)x+m≤0,即 (x-m)(x-1)≤0,
当m<1时,其解集为{x|m≤x≤1},
当m=1时,其解集为{x|x=1},
当m>1时,其解集为{x|1≤x≤m}.

点评 本题考查一元二次不等式的解法以及不等式大小的比较,(2)时注意要分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若函数y=$\frac{1}{3}$x3+mx的导函数有零点,则实数m的取值范围是(  )
A.m>0B.m≤0C.m>1D.m≤1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系中,曲线C的参数方程:$\left\{\begin{array}{l}x=2cosθ\\ y=\sqrt{3}sinθ\end{array}\right.$,直线l的参数方程为$\left\{\begin{array}{l}x=a+2t\\ y=1-t\end{array}\right.$.
(1)若直线l与曲线C只有一个公共点,求实数a;
(2)若点P,Q分别为直线l与曲线C上的动点,若${|{PQ}|_{min}}=\frac{{\sqrt{5}}}{5}$,求实数a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a,b,c为△ABC的三个角A,B,C所对的边,若3bcosC=c(1-3cosB),则$\frac{c}{a}$=(  )
A.2:3B.4:3C.3:1D.3:2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线C:y2=2px(p>0)上一点P(2,t)到焦点F的距离为3.
(1)求抛物线C的方程;
(2)过点F作两条互相垂直的直线l1,l2,设l1与抛物线C交于A、B两点,l2与抛物线C交于D、E两点,求|AF|•|FB|+|EF|•|FD|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.为了检测某种产品的质量(单位:千克),抽取了一个容量为N的样本,整理得到的数据作出了频率分布表和频率分布直方图如图:
 分组 频数 频率
[17.5,20) 10 0.05
[20,225) 50 0.25
[22.5,25) a b
[25,27.5) 40 c
[27.5,30] 20 0.10
 合计 N 1
(Ⅰ)求出表中N及a,b,c的值;
(Ⅱ)求频率分布直方图中d的值;
(Ⅲ)从该产品中随机抽取一件,试估计这件产品的质量少于25千克的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数 f(x)=x-ln x-2.
(Ⅰ)求函数 f ( x) 的最小值;
(Ⅱ)如果不等式 x ln x+(1-k)x+k>0(k∈Z)在区间(1,+∞)上恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知an=2n-1(n∈N*),则$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{9}{a}_{10}}$=$\frac{9}{19}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=2x2+ax-b(a,b∈R)的两个零点分别在区间$(\frac{1}{2},1)$和(1,2)内,则z=a+b的最大值为(  )
A.0B.-4C.$-\frac{14}{3}$D.-6

查看答案和解析>>

同步练习册答案