精英家教网 > 高中数学 > 题目详情
4.求下列函数的定义域与值域:
(1)y=$\sqrt{1-(\frac{1}{2})^{x}}$;
(2)y=$\frac{{a}^{x}-1}{{a}^{x}+1}$(a>0,且a≠1).

分析 根据函数成立的条件求函数的定义域,根据指数函数的性质结合根式和分式的性质进行求解即可.

解答 解:(1)要使函数有意义,则1-($\frac{1}{2}$)x≥0得($\frac{1}{2}$)x≤1,得x≥0,即函数的定义域为[0,+∞),
∵0≤1-($\frac{1}{2}$)x<1,∴0≤$\sqrt{1-(\frac{1}{2})^{x}}$<1,即函数值域为[0,1),
(2)∵1+ax>1恒成立,∴函数的定义域为R,
∵y=$\frac{{a}^{x}-1}{{a}^{x}+1}$=$\frac{{a}^{x}+1-2}{{a}^{x}+1}$=1-$\frac{2}{{a}^{x}+1}$,
∵1+ax>1,∴0<$\frac{1}{{a}^{x}+1}$<1,则0<$\frac{2}{{a}^{x}+1}$<2,则-2<-$\frac{2}{{a}^{x}+1}$<0,
-1<1-$\frac{2}{{a}^{x}+1}$<1,即函数的值域为(-1,1).

点评 本题主要考查函数定义域和值域的求解,根据根式函数和分式函数的性质进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在复平面内,复数z=$\frac{1}{3-i}$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在三棱柱ABC-A1B1C1中,A1B⊥平面ABC,AB⊥AC,且AB=AC=A1B=1.
(1)求棱AA1与BC所成的角的大小;
(2)在棱B1C1上确定一点P,使二面角P-AB-A1的平面角的余弦值为$\frac{{2\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,四棱锥P-ABCD的底面ABCD是棱长为2的菱形,∠DAB=$\frac{π}{3}$,侧面PAD为等边三角形,PB=$\sqrt{3}$
(Ⅰ)证明:AD⊥PB;
(Ⅱ)求二面角A-PB-C平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.化简:$\frac{si{n}^{3}(π+α)+co{s}^{3}(2π-α)}{sin(3π+α)+cos(4π-α)}$+sin(π-α)cos(π+α)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若不等式(x-1)2-logax≤0在x∈(1,2)内恒成立,则a的取值范围是(  )
A.$\frac{1}{2}<a<1$B.$\frac{1}{2}≤a<1$C.1<a≤2D.1<a<2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2+13x+36.
(Ⅰ)求h(x)=$\frac{1}{{\sqrt{f(x)}}}$的定义域;
(Ⅱ)对任意x>0,$\frac{f(x)}{x}$>m恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a为函数y=2sinx(x∈R)的最大值,则二项式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6的展开式中含x2项的系数是(  )
A.192B.182C.-192D.-182

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.甲盒子里装有分别标有数字1,2,4,7的4张卡片,乙盒子里装有分别标有数字1,4的2张卡片.若从两个盒子中各随机的摸取出1张卡片,则2张卡片上的数字之积为偶数的概率为(  )
A.$\frac{7}{8}$B.$\frac{3}{4}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

同步练习册答案