| A. | $\frac{π}{4}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
分析 $\overrightarrow{m}$∥$\overrightarrow{n}$,可得(a-c)(a-c-b)-(b-a)(b+c)=0,化为:a2+c2-b2=ac.利用余弦定理可得:B.由a(sinB-cosC)=c•cosA,利用正弦定理可得:sinA(sinB-cosC)=sinC•cosA,利用和差公式化简可得A,再利用三角形内角和定理即可得出.
解答 解:∵$\overrightarrow{m}$∥$\overrightarrow{n}$,
∴(a-c)(a-c-b)-(b-a)(b+c)=0,
化为:a2+c2-b2=ac.
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{1}{2}$,
∵B∈(0,π),
∴$B=\frac{π}{3}$.
∵a(sinB-cosC)=c•cosA,
∴sinA(sinB-cosC)=sinC•cosA,
∴sinAsinB=sinAcosC+sinC•cosA,
∴sinAsinB=sin(A+C)=sinB,
∴sinA=1,∵A∈(0,π),
∴A=$\frac{π}{2}$.
∴C=π-A-B=π-$\frac{π}{2}$-$\frac{π}{3}$=$\frac{π}{6}$.
故选:B.
点评 本题考查了向量数量积的运算性质、和差公式、三角形内角和定理、正弦定理余弦定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\sqrt{2}$ | B. | 2+$\sqrt{2}$ | C. | 2-$\sqrt{2}$ | D. | 1+$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,-1] | B. | [-$\sqrt{2}$,-1] | C. | [-$\sqrt{2}$,-$\frac{\sqrt{2}}{2}$] | D. | [-1,-$\frac{\sqrt{2}}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | S16 | B. | S17 | C. | S18 | D. | S16或S17 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com