精英家教网 > 高中数学 > 题目详情
4.在△ABC中,A、B、C所对的边分别是a、b、c,$\overrightarrow{m}$=(b-a,a-c-b),$\overrightarrow{n}$=(a-c,b+c),若$\overrightarrow{m}$∥$\overrightarrow{n}$,且a(sinB-cosC)=c•cosA,则C等于(  )
A.$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{2}$

分析 $\overrightarrow{m}$∥$\overrightarrow{n}$,可得(a-c)(a-c-b)-(b-a)(b+c)=0,化为:a2+c2-b2=ac.利用余弦定理可得:B.由a(sinB-cosC)=c•cosA,利用正弦定理可得:sinA(sinB-cosC)=sinC•cosA,利用和差公式化简可得A,再利用三角形内角和定理即可得出.

解答 解:∵$\overrightarrow{m}$∥$\overrightarrow{n}$,
∴(a-c)(a-c-b)-(b-a)(b+c)=0,
化为:a2+c2-b2=ac.
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{1}{2}$,
∵B∈(0,π),
∴$B=\frac{π}{3}$.
∵a(sinB-cosC)=c•cosA,
∴sinA(sinB-cosC)=sinC•cosA,
∴sinAsinB=sinAcosC+sinC•cosA,
∴sinAsinB=sin(A+C)=sinB,
∴sinA=1,∵A∈(0,π),
∴A=$\frac{π}{2}$.
∴C=π-A-B=π-$\frac{π}{2}$-$\frac{π}{3}$=$\frac{π}{6}$.
故选:B.

点评 本题考查了向量数量积的运算性质、和差公式、三角形内角和定理、正弦定理余弦定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2+bx+c,集合 A={x|f(x)=x}.
(1)当b=-2,c=2时,求集合 A;
(2)当集合 A={1}时,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f(x)=$\frac{{4}^{x}-1}{{2}^{x+1}}$-2x+1,当f(-m)=$\sqrt{2}$时,则f(m)=(  )
A.-$\sqrt{2}$B.2+$\sqrt{2}$C.2-$\sqrt{2}$D.1+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.集合A={(x,y)||x-a|+|y-1|≤1},B={(x,y)|(x-1)2+(y-1)2≤1},若集合A∩B=∅,则实数a的取值范围是a<-1或a>3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={x|$\frac{x-1}{x+3}$≥0},B={x|x2+(1-a)x-a<0}.若A∩B=∅,求集合A、B及实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,将f(x)的图象向右平移$\frac{π}{6}$,再将所得图象每个点纵坐标不变,横坐标伸长为原来的2倍得到y=g(x)的图象,则函数y=g(x)在区间[-$\frac{π}{3}$,$\frac{π}{18}$]上值域为(  )
A.[-2,-1]B.[-$\sqrt{2}$,-1]C.[-$\sqrt{2}$,-$\frac{\sqrt{2}}{2}$]D.[-1,-$\frac{\sqrt{2}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.判断奇偶性:
(1)f(x)=x(x+2);
(2)f(x)=|x+1|+|x-1|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.判断下列推出关系是否成立:
(1)|a|=7?a=7或a=-7;
(2)x2+y2=0?x=0或y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设等差数列{an}满足5a7=7a10,且a1>0,Sn为其前n项和,则Sn中最大的是(  )
A.S16B.S17C.S18D.S16或S17

查看答案和解析>>

同步练习册答案