精英家教网 > 高中数学 > 题目详情
12.已知α、β是两个不同的平面,m、n是两条不同的直线,下列命题中正确的是(  )
A.若α∥β,m⊥n,m⊥α,则n∥βB.若α⊥β,m∥n,m⊥β,则n?α
C.若n⊥α,m⊥α,则m∥nD.若α⊥β,n∥α,m⊥β,则m⊥n

分析 利用平面与平面平行、垂直,线面垂直、平行的判定与性质,即可得出结论.

解答 解:若α∥β,m⊥n,m⊥α,则n∥β或n?β,故A不正确;
若α⊥β,m∥n,m⊥β,则n?α或n∥α,故B不正确;
若n⊥α,m⊥α,利用垂直于同一平面的两条直线平行,可得m∥n,故C正确;
若α⊥β,n∥α,m⊥β,则m、n垂直,平行、异面都有可能,故D不正确.
故选:C.

点评 本题考查平面与平面平行、垂直,线面垂直、平行的判定与性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.(重点中学做)对于曲线C所在的平面上的定点P,若存在以点P为顶点的角α,使得α≥∠APB对于曲线C上的任意两个不同的点A、B恒成立,则称角α为曲线C的“P点视角”,并称其中最小的“P点视角”为曲线C相对于点P的“P点确视角”.已知曲线C:${x^2}-\frac{y^2}{3}=1$(x>0),相对于坐标原点O“O点确视角”的大小是$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若实数x,y满足不等式组$\left\{\begin{array}{l}{2x-3y+6≥0}\\{4x-y-8≤0}\\{x+y-2≥0}\end{array}\right.$,则z=x-y的最大值为(  )
A.-2B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$\sqrt{3}$sin(π-x)+cos(-x)=$\frac{8}{5}$,则cos(x-$\frac{π}{3}$)=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{6}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|(x-4)(x+2)<0},B={-3,-1,1,3,5},则A∩B=(  )
A.{-1,1,3}B.{-3,-1,1,3}C.{-1,1,3,5}D.{-3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a=log23,b=log32,c=log0.52,那么(  )
A.a<b<cB.a<c<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若z为复数且z(2-i)=3+i,i为虚数单位,则|z|=(  )
A.2B.$\sqrt{2}$C.$\frac{74}{25}$D.$\frac{\sqrt{74}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某年级有1000名学生,随机编号为0001,0002,…,1000,现用系统抽样方法,从中抽出200人,若0122号被抽到了,则下列编号也被抽到的是(  )
A.0116B.0927C.0834D.0726

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知关于x的不等式2x2-2mx+m<0的解集为A,若集合A中恰好有两个整数,则实数m的取值范围是($\frac{8}{3}$,$\frac{18}{5}$].

查看答案和解析>>

同步练习册答案