| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{6}{5}$ | D. | $\frac{7}{5}$ |
分析 利用诱导公式化简已知可得$\frac{\sqrt{3}}{2}$sinx+$\frac{1}{2}$cosx=$\frac{4}{5}$,利用两角差的余弦函数公式化简所求即可计算得解.
解答 解:∵$\sqrt{3}$sin(π-x)+cos(-x)=$\frac{8}{5}$,
⇒$\sqrt{3}$sinx+cosx=$\frac{8}{5}$,
⇒2($\frac{\sqrt{3}}{2}$sinx+$\frac{1}{2}$cosx)=$\frac{8}{5}$,
⇒$\frac{\sqrt{3}}{2}$sinx+$\frac{1}{2}$cosx=$\frac{4}{5}$,
∴cos(x-$\frac{π}{3}$)=$\frac{1}{2}$cosx+$\frac{\sqrt{3}}{2}$sinx=$\frac{4}{5}$.
故选:B.
点评 本题主要考查了诱导公式,两角差的余弦函数公式在三角函数化简求值中的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{57}$ | B. | $\sqrt{61}$ | C. | $\sqrt{78}$ | D. | $\sqrt{85}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{\sqrt{3}}{3}$e,$\sqrt{e}$) | B. | (-$\frac{\sqrt{3}}{3}$e,0)∪(0,$\frac{\sqrt{3}}{3}$e) | C. | (0,$\frac{\sqrt{3}}{3}$e) | D. | ($\frac{1}{\sqrt{e}}$,1)∪{$\frac{\sqrt{3}}{3}$e} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若α∥β,m⊥n,m⊥α,则n∥β | B. | 若α⊥β,m∥n,m⊥β,则n?α | ||
| C. | 若n⊥α,m⊥α,则m∥n | D. | 若α⊥β,n∥α,m⊥β,则m⊥n |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | M∩N | B. | (∁UM)∩N | C. | M∩(∁UN) | D. | (∁UM)∩(∁UN) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com