分析 由题意可得${∫}_{0}^{π}$|sinx-cosx|dx=${∫}_{0}^{\frac{π}{4}}$(cosx-sinx)dx+${∫}_{\frac{π}{4}}^{π}$(sinx-cosx)dx,再根据定积分的计算法则计算即可.
解答 解:${∫}_{0}^{π}$|sinx-cosx|dx=${∫}_{0}^{\frac{π}{4}}$(cosx-sinx)dx+${∫}_{\frac{π}{4}}^{π}$(sinx-cosx)dx,
=(sinx+cosx)|${\;}_{0}^{\frac{π}{4}}$+(-cosx-sinx)|${\;}_{\frac{π}{4}}^{π}$,
=[(sin$\frac{π}{4}$+cos$\frac{π}{4}$)-(sin0+cos0)]-[(sinπ+cosπ-(sin$\frac{π}{4}$+cos$\frac{π}{4}$)],
=($\sqrt{2}$-1)-(-1-$\sqrt{2}$),
=2$\sqrt{2}$,
故答案为:2$\sqrt{2}$.
点评 本题考查了定积分的计算,关键是化为分段函数,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 一条线段 | B. | 一条直线 | ||
| C. | 一个圆 | D. | 一个圆,但要去掉两个点 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com