分析 用a表示出A,B,C,D四点的横坐标,计算$\frac{n}{m}$的值,再利用基本不等式求解.
解答 解:(Ⅰ)设A(xA,yA),B(xB,yB),C(xC,yC),D(xD,yD),
则x${\;}_{A}={4}^{-a}$,${x}_{B}={4}^{a}$,${x}_{C}=4-\frac{18}{2a+1}$,${x}_{D}=4•\frac{18}{2a+1}$,
则$\frac{n}{m}=\frac{{4}^{a}-4•\frac{18}{2a+1}}{{4}^{-a}-{4}^{-\frac{18}{2a+1}}}$=${4}^{a+\frac{18}{2a+1}}$,
令f(a)=log${\;}_{4}\frac{n}{m}$=a+$\frac{18}{2a+1}$=a+$\frac{1}{2}$+$\frac{9}{a+\frac{1}{2}}$-$\frac{1}{2}$,
∵$a+\frac{1}{2}>\frac{1}{2}$,
∴$f(a)≥2\sqrt{9}-\frac{1}{2}=\frac{11}{2}$,当且仅当a+$\frac{1}{2}$=$\frac{9}{a+\frac{1}{2}}$,即a=$\frac{5}{2}$时取等号,
所以当a=$\frac{5}{2}$时,f(a)有最小值,$\frac{n}{m}$也有最小值.
故答案为:$\frac{5}{2}$.
点评 本题考查了对数函数的图象,对数运算,基本不等式,属于基础题
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x>0,x2+x>0 | B. | ?x>0,x2+x≤0 | C. | ?x>0,x2+x≤0 | D. | ?x>0,x2+x<0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com