精英家教网 > 高中数学 > 题目详情
(2010•宿州三模)设不等式组
x-y+5≥0
x+y≥a
0≤x≤2
所表示的平面区域是一个三角形,则此平面区域面积的最大值
4
4
分析:根据已知的不等式组画出满足条件的可行域,根据图形情况分类讨论,不难求出表示的平面区域是一个三角形且其面积最大时a的取值,从而求出此平面区域面积的最大值.
解答:解:满足约束条件
x-y+5≥0
0≤x≤2
的可行域如下图示.
x-y+5=0
x=2
得A(2,7),
由图可知,若不等式组
x-y+5≥0
x+y≥a
0≤x≤2
表示的平面区域是一个三角形,则a的取值范围是:5≤a<9,
且当a=5时,此平面区域面积的最大,
x+y=5
x=2
得B(2,3),
面积的最大值S=
1
2
×AB×h=
1
2
×4×2=4,
故答案为:4.
点评:平面区域的形状问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,然后结合分类讨论的思想,针对图象分析满足条件的参数的取值范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•宿州三模)已知二次曲线
x2
4
+
y2
m
=1,则当m∈[-2,-1]
时,该曲线的离心率的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宿州三模)若将函数f(x)=Asin(ωx+
π
6
)
(A>0,ω>0)的图象向左平
π
6
移个单位后得到的图象关于原点对称,则ω的值可能为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宿州三模)曲线y=
2
cosx
-
π
4
x=
π
4
处的切线方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宿州三模)已知函数f(x)=x2-2alnx,g(x)=
13
x3-x2

(1)讨论函数f(x)的单调区间;
(2)若f(x)≥g'(x)对于任意的x∈(1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案