精英家教网 > 高中数学 > 题目详情
14.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=4,c=2$\sqrt{2}$,cosA=-$\frac{\sqrt{2}}{4}$.
(1)求b和sinC的值;
(2)求cos(2A+$\frac{π}{6}$)的值.

分析 (1)先利用余弦定理求出b,由平方关系求出sinA的值,再利用正弦定理求出sinC的值.
(2)先利用和差角公式和二倍角公式把cos(2A+$\frac{π}{6}$)展开,再代入数据即可求解.

解答 解:(1)由余弦定理a2=b2+c2-2bccosA,可得:16=b2+8-2b×$2\sqrt{2}×\frac{\sqrt{2}}{4}$=b2+8+2b,
∴b2+2b-8=0,
∴b=2或-4(舍去),
sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{14}}{4}$,
由正弦定理$\frac{a}{sinA}=\frac{c}{sinC}$,
∴sinC=$\frac{csinA}{a}$=$\frac{2\sqrt{2}×\frac{\sqrt{14}}{4}}{4}$=$\frac{\sqrt{7}}{4}$;
(2)cos(2A+$\frac{π}{6}$)=cos2Acos$\frac{π}{6}$-sin2Asin$\frac{π}{6}$=$\frac{\sqrt{3}}{2}$(2cos2A-1)-$\frac{1}{2}$×2sinAcosA=$\frac{\sqrt{3}}{2}$(2×$\frac{2}{16}$-1)-$\frac{\sqrt{14}}{4}×\frac{\sqrt{2}}{4}$=$\frac{\sqrt{7}-3\sqrt{3}}{8}$.

点评 本题主要考查了余弦定理,正弦定理,和差角公式和二倍角公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.过抛物线x2=2y上一点A(不与原点O重合)作抛物线的切线m,过A作m的垂线l,若l恰好经过(0,2),则点A的坐标为($\sqrt{2}$,1)或(-$\sqrt{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设数列 {an} 的前n项和为Sn(n∈N*),关于数列 {an} 有下列四个命题:
①若 {an}既是等差数列又是等比数列,则 an=an+1(n∈N*);
②若  Sn=an2+bn(a,b∈R),则 {an}是等差数列;
③若 Sn=1-(-1)n,则 {an}是等比数列;
④若 S1=1,S2=2,且 Sn+1-3Sn+2Sn-1=0(n≥2),则数列 {an}是等比数列.
这些命题中,真命题的序号是①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}的前n项和为Sn,已知a1=1,2Sn=(n+1)an,n∈N*
(1)求数列{an}的通项公式;
(2)令bn=$\frac{n+1}{{{{({n+2})}^2}a_n^2}}$,数列{bn}的前n项和为Tn,试比较Tn与$\frac{5}{16}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=cos2x+2sinx,x∈[0,α]的值域为[1,$\frac{3}{2}$],其中α>0,则角α的取值范围是[$\frac{π}{6}$,π].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.从一批产品中取出三件,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论中正确的是(2);
(1)A与C互斥 (2)B与C互斥 (3)任两个均互斥  (4)任两个均不互斥.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.全国篮球职业联赛的某个赛季在H队与F队之间角逐.采取七局四胜制(无平局),即若有一队胜4场,则该队获胜并且比赛结束.设比赛双方获胜是等可能的.根据已往资料显示,每场比赛的组织者可获门票收入100万元.组织者在此赛季中,两队决出胜负后,门票收入不低于500万元的概率是0.875.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=sin2ωx+2$\sqrt{3}$cos2ωx,(0<ω<2),且f(x-$\frac{π}{6}$)=f(x+$\frac{π}{2}$).
(Ⅰ)试求ω的值;
(Ⅱ)讨论函数g(x)=2-|f(x)-$\sqrt{3}$|-kx(k∈R)在x∈[0,$\frac{7π}{18}$]上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某社区有800户家庭,其中高收入家庭200户,中等收入家庭480户,低收入家庭120户,为了调查社会购买力的某项指标,要从中抽取一个容量为100户的样本,记作①;某学校高一年级有12名音乐特长生,要从中选出3名调查学习训练情况,记作②.那么完成上述两项调查应采用的抽样方法是(  )
A.①用简单随机抽样  ②用系统抽样B.①用分层抽样  ②用简单随机抽样
C.①用系统抽样  ②用分层抽样D.①用分层抽样  ②用系统抽样

查看答案和解析>>

同步练习册答案