精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+bx+5,记f(x)的导数为f′(x).
(1)若曲线f(x)在点(1,f(1))处的切线斜率为3,且x=
23
时,y=f(x)有极值,求函数f(x)的解析式;
(2)在(I)的条件下,求函数f(x)在[-4,1]上的最大值和最小值.
分析:(1)求导函数,利用曲线f(x)在点(1,f(1))处的切线斜率为3,且x=
2
3
时,y=f(x)有极值,建立两个方程,即可求函数f(x)的解析式;
(2)确定函数的极值点,利用函数的最值在极值点处及端点处取得,即可得到结论.
解答:解:(1)由f(x)=x3+ax2+bx+5,求导数得f'(x)=3x2+2ax+b,
∵在函数f(x)图象上一点P(1,f(1))处切线的斜率为3,
∴f'(1)=3,即3+2a+b=3,化简得2a+b=0①;
∵y=f(x)在x=
2
3
时有极值,∴f'(
2
3
)=0,即4a+3b+4=0 ②.
由①②联立解得a=2,b=-4,
∴f(x)=x3+2x2-4x+5;
(2)由(1)知f'(x)=3x2+4x-4=(x+2)(3x-2)
∴函数在x=-2及x=
2
3
时有极值
∵f(-4)=-11,f(-2)=13,f(
2
3
)=
95
27
,f(1)=4
∴函数f(x)在[-4,1]上的最大值为13,最小值为-11.
点评:本题考查导数知识的运用,考查导数的几何意义,考查函数的极值与最值,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案