精英家教网 > 高中数学 > 题目详情

【题目】如图,已知正四面体的棱长为2是棱上一动点,若,则线段的长度的最小值是______

【答案】

【解析】

的中点为,取的中点为,连接,在上取一点,使得,取的中点为,连接,则平面,则点在以点为球心、为直径的球面上,且轨迹是以点为圆心的一段圆弧,结合几何知识即可求出答案.

解:∵

∴点在以为直径的球面上,取的中点为

∵点中,

由于一个平面截一个球所得的是一个圆面,

∴点的轨迹为一段圆弧,

的中点为,连接,在上取一点,使得

在等边中,易得点的中心,

∴在正四面体中,易得平面

的中点为,连接,则,则平面

由于一个平面截一个球所得的是一个圆面,且球心与这个圆的圆心所在直线与该平面垂直,

∴点的轨迹是以点为圆心的一段圆弧,

的半径为

中,

,则

∴圆的半径

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知分别为椭圆的左、右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于直线于点,线段的中垂线交于点.记点的轨迹为曲线.

1)求曲线的方程,并说明是什么曲线;

2)若直线与曲线交于两点,则在圆上是否存在两点,使得?若存在,请求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆长轴长为4,右焦点到左顶点的距离为3

1)求椭圆的方程;

2)设过原点的直线交椭圆于两点(不在坐标轴上),连接并延长交椭圆于点,若,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数

(Ⅰ)求函数处的切线;

(Ⅱ)若函数处有最大值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“杂交水稻之父”袁隆平一生致力于杂交水稻技术的研究、应用与推广,发明了“三系法”籼型杂交水稻,成功研究出“两系法”杂交水稻,创建了超级杂交稻技术体系,为我国粮食安全、农业科学发展和世界粮食供给做出了杰出贡献;某杂交水稻种植研究所调查某地水稻的株高,得出株高(单位:cm)服从正态分布,其密度曲线函数为,则下列说法正确的是(

A.该地水稻的平均株高为100cm

B.该地水稻株高的方差为10

C.随机测量一株水稻,其株高在120cm以上的概率比株高在70cm以下的概率大

D.随机测量一株水稻,其株高在(8090)和在(100110)(单位:cm)的概率一样大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在创建全国卫生文明城的过程中,环保部门对某市市民进行了一次垃圾分类知识的网络问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如下表所示.

组别

频数

25

150

200

250

225

100

50

(Ⅰ)已知此次问卷调查的得分服从正态分布近似为这1000人得分的平均值(同一组中的数据用该组区间的中点值为代表),请利用正态分布的知识求

(Ⅱ)在(Ⅰ)的条件下,环保部门为此次参加问卷调查的市民制定如下奖励方案:

i)得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;

ii)每次赠送的随机话费和相应的概率如下表.现市民甲要参加此次问卷调查,记为该市民参加问卷调查获赠的话费,求的分布列及数学期望.

赠送的随机话费(单位:元)

20

40

概率

附:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形与等边所在平面互相垂直,分别是线段的中点.

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其定义域为.(其中常数,是自然对数的底数)

1)求函数的递增区间;

2)若函数为定义域上的增函数,且,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,九儿问甲歌就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.”这首歌决的大意是:一位老公公有九个儿子,九个儿子从大到小排列,相邻两人的年龄差三岁,并且儿子们的年龄之和为207岁,请问大儿子多少岁,其他几个儿子年龄如何推算.”在这个问题中,记这位公公的第个儿子的年龄为,则

A.17B.29C.23D.35

查看答案和解析>>

同步练习册答案