精英家教网 > 高中数学 > 题目详情
11.设f(x)=(2x-1)ex,则f′(0)等于(  )
A.1B.-1C.4D.-4

分析 令导函数中的x等于0求出f′(0)的值.

解答 解:∵f(x)=(2x-1)ex
∴f′(x)=2ex+(2x-1)ex
∴f′(0)=2e0+(2×0-1)e0=1,
故选:A

点评 本题考查了导数的运算法则,以及函数在某点处的导数值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若定义域均为D的三个函数f(x),g(x),h(x)满足条件:?x∈D,点(x,g(x)) 与点(x,h(x))都关于点(x,f(x))对称,则称h(x)是g(x)关于f(x)的“对称函数”.已知g(x)=$\sqrt{1-{x}^{2}}$,f(x)=3x+b,h(x)是g(x)关于f(x)的“对称函数”,且h(x)≥g(x)恒成立,则实数b的取值范围是(  )
A.(-∞,-$\sqrt{10}$]B.[-$\sqrt{10}$,$\sqrt{10}$]C.[-3,$\sqrt{10}$]D.[$\sqrt{10}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点F1与点F2是双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{10}$=1的左、右焦点,点P在直线l:x-$\sqrt{3}$y+8+2$\sqrt{3}$=0上,当∠F1PF2取最大值时,$\frac{|P{F}_{1}|}{|P{F}_{2}|}$的比值是(  )
A.$\sqrt{2}+1$B.$\sqrt{3}+1$C.$\sqrt{2}-1$D.$\sqrt{3}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设数列{an}的前n项和为Sn,且a1=1,an+1=3Sn(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=n•an,求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a,b,c为三条不同的直线,α,β是两个不同的平面,则下列判断正确的是(  )
A.若a⊥b,b⊥c,则a⊥cB.若a∥α,b∥α,则a∥bC.若a∥α,b⊥α,则b∥αD.若a⊥α,α∥β,则a⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=Asin(x+φ)(A>0)在x=$\frac{π}{3}$处取得最小值,则(  )
A.f(x+$\frac{π}{3}$)是奇函数B.f(x+$\frac{π}{3}$)是偶函数C.f(x-$\frac{π}{3}$)是奇函数D.f(x-$\frac{π}{3}$)是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在数列{an}中.已知a1=2,an+1=$\frac{2{a}_{n}}{{a}_{n}+1}$.
(1)求证:{$\frac{1}{{a}_{n}}$-1}是等比数列
(2)若对任意n∈N+,an>m恒成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知实数x、y满足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+2y+2≥0}\\{4x-y-10≤0}\end{array}\right.$,z=kx+y(k∈R)仅在(4,6)处取得最大值,则k的取值范围是(  )
A.k>1B.k>-1C.k<-$\frac{1}{2}$D.k<-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线$\left\{\begin{array}{l}x=5-3t\\ y=3+\sqrt{3}t\end{array}\right.$(为参数)的倾斜角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

同步练习册答案