精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$\frac{3x}{x+1}$,x∈[-5,-2].
(1)利用定义法判断函数的单调性;
(2)求函数值域.

分析 (1)利用函数的单调性的定义判断即可.
(2)利用(1)的结论,求解函数的最值即可.

解答 解:(1)对x1,x2∈[-5,-2],x1<x2,$f({x_1})-f({x_2})=\frac{{3{x_1}}}{{{x_1}+1}}-\frac{{3{x_2}}}{{{x_2}+1}}$=$\frac{{3({x_1}-{x_2})}}{{({x_1}+1)({x_2}+1)}}$,
由x1-x2<0,x1+1<0,x2+1<0,
所以f(x1)-f(x2)<0,即f(x1)<f(x2),
所以y=f(x)在[-5,-2]上单调递增.
(2)由(1)知$f{(x)_{min}}=f(-5)=\frac{15}{4}$,f(x)max=f(-2)=6,
所以函数y=f(x)的值域为$[{\frac{15}{4},6}]$.

点评 本题考查函数的单调性的证明与应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xoy中,过点P(2,0)的直线l的参数方程为$\left\{\begin{array}{l}{x=2-\sqrt{3}t}\\{y=t}\end{array}\right.$(t为参数),圆C的方程为x2+y2=4,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求直线l的普通方程和圆C的极坐标方程;
(2)求圆心C到直线l的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{{3}^{x}-1}{{3}^{x}+1}$.
(1)判断f(x)的奇偶性 
(2)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=2ax2+4(a-3)x+5在区间(-∞,3)上是减函数,则a的取值范围是(  )
A.$[0,\frac{3}{4}]$B.$(0,\frac{3}{4}]$C.$[0,\frac{3}{4})$D.$(0,\frac{3}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.解不等式:x+$\frac{2}{x+1}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=ex+x2+x+1与g(x)的图象关于直线2x-y-3=0对称,P,Q分别是函数f(x),g(x)图象上的动点,则|PQ|的最小值为2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=x3+2x2+x-a恰好有两个不同的零点,则a的值可以为(  )
A.-$\frac{1}{3}$B.-$\frac{1}{9}$C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知偶函数f(x)在[0,+∞)上单调递减,则满足$f({3x+\frac{1}{2}})>f(\frac{5}{2})$的x的取值范围是(  )
A.(-∞,$\frac{2}{3}$)B.(-∞,-1)C.(-l,$\frac{2}{3}$)D.(-∞,-1)∪($\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若直线l:y=kx-1与曲线C:f(x)=x-1+$\frac{1}{{e}^{x}}$没有公共点,则实数k的最大值为(  )
A.-1B.$\frac{1}{2}$C.1D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案