精英家教网 > 高中数学 > 题目详情
8.若直线l:y=kx-1与曲线C:f(x)=x-1+$\frac{1}{{e}^{x}}$没有公共点,则实数k的最大值为(  )
A.-1B.$\frac{1}{2}$C.1D.$\sqrt{3}$

分析 直线l:y=kx-1与曲线f(x)=x-1+$\frac{1}{{e}^{x}}$没有公共点,则x-1+$\frac{1}{{e}^{x}}$=kx-1无解,可化为k=1+$\frac{1}{x{e}^{x}}$,设g(x)=1+$\frac{1}{x{e}^{x}}$,求导,研究此函数的单调性即可解决

解答 解:若直线l:y=kx-1与曲线f(x)=x-1+$\frac{1}{{e}^{x}}$没有公共点,则x-1+$\frac{1}{{e}^{x}}$=kx-1无解,
∵x=0时,上述方程不成立,∴x≠0
则x-1+$\frac{1}{{e}^{x}}$=kx-1可化为k=1+$\frac{1}{x{e}^{x}}$,
设g(x)=1+$\frac{1}{x{e}^{x}}$,
∴g′(x)=$\frac{-(x+1)}{{x}^{2}{e}^{x}}$
∴g′(x)满足:在(-∞,-1)上g′(x)>0,在(-1,0)上g′(x)<0,在(0,+∞)上g′(x)<0,
∴g(x)满足:在(-∞,-1)上递增,在(-1,0)上递减,在(0,+∞)上递减,
g(-1)=1-e,而当x→+∞时,g(x)→1,
∴g(x)的图象:

∴g(x)∈(-∞,1-e]∪(1,+∞)
无解时,k∈(1-e,1],
∴kmax=1,
故选:C

点评 本题考查导数的应用,考查函数的最值的求法,解题时要认真审题,注意导数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{3x}{x+1}$,x∈[-5,-2].
(1)利用定义法判断函数的单调性;
(2)求函数值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知角α的终边经过点$(-\sqrt{3},1)$,则对函数f(x)=sinαcos2x+cosαcos(2x-$\frac{π}{2}$)的表述正确的是(  )
A.对称中心为$(\frac{π}{3},0)$
B.函数y=sin2x向左平移$\frac{5π}{6}$个单位可得到f(x)
C.f(x)在区间$(-\frac{2π}{3},-\frac{π}{6})$上递增
D.方程f(x)=0在区间$[-\frac{5π}{6},0]$上有三个零点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.用分期付款的方式购买一批总价为2100万元的住房,购买当天首付100万元,以后每月的这一天都交100万元,并加付此前的欠款利息,设月利率为1%,问分期付款的第10个月应付多少万元?全部付清,买这批房实际付了多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某公司为激励创新,计划逐年加大研发奖金投入.若该公司2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是2020年(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图是甲、乙两名篮球运动员2013年赛季每场比赛得分的茎叶图,则甲、乙两人比赛得分的中位数之和为53.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:a2≥0(a∈R),命题q:函数f(x)=x2-x在区间[0,+∞)上单调递增,则下列命题  ①p∨q ②p∧q ③(¬p)∧(¬q) ④(¬p)∨q其中为假命题的序号为(  )
A.①②B.②③④C.③④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知A(1,1),B(4,2),则直线AB的斜率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.不等式x2+x<$\frac{a}{b}$+$\frac{9b}{a}$对任意a,b∈(0,+∞)恒成立,则实数x的取值范围是(  )
A.(-∞,3)∪(2,+∞)B.(-6,1)C.(-∞,-6)∪(1,+∞)D.(-3,2)

查看答案和解析>>

同步练习册答案