精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+2(1-a)x+2(1-a)ln(x-1)x∈(1,+∞).
(1)x=
3
2
是函数的一个极值点,求a的值;
(2)求函数f(x)的单调区间;
(3)当a=2时,函数g(x)=-x2-b,(b>0),若对任意m1,m2∈[
1
e
+1,e+1],
.
g(m2)-f(m1) 
  
.
<2g2+2g
都成立,求b的取值范围.
分析:(1)若x=
3
2
是函数f(x)的一个极值点,求导得到f′(
3
2
)=0得,求a;
(2)由(1)得到的导数,考虑f(x)的定义域,利用导数与单调性的关系即可确定函数的单调区间;
(3)若对任意m1,m2∈[
1
e
+1,e+1],
.
g(m2)-f(m1) 
  
.
<2e2+2e
都成立,转化为求函数f(x)在区间∈[
1
e
+1,e+1]上的最大值与函数g(x)在区间∈[
1
e
+1,e+1]上的最小值的差小于2e2+2e即可,从而建立关于b的不等关系求出b的取值范围.
解答:解:(1)函数f(x)=x2+2(1-a)x+2(1-a)ln(x-1)
f′(x)=2x+2(1-a)+
2(1-a)
x-1
,…(2分)
∵x=
3
2
是函数的一个极值点,
∴f′(
3
2
)=0
解得:a=
3
2
…(4分)
(2)∵f′(x)=2x+2(1-a)+
2(1-a)
x-1
=
2x(x-a)
x-1

又f(x)的定义域为(1,+∞).
∴当a≤1时,函数f(x)的单调增区间(1,+∞).…(6分)
当a>1时,函数f(x)的单调增区间(a,+∞),减区间为(1,a).…(…(8分)
(3)当a=2时,由(2)知f(x)在(1,2)减,在(2,+∞)增.
∵f(2)=0,f(
1
e
+1)=
1
e2+1
,f(e+1)=e2-3
∴y=f(x)在[
1
e
+1,e+1]上的值域为[0,e2-3]…(10分)
∵函数g(x)=-x2-b在[
1
e
+1,e+1]上是减函数,
∴y=g(x)在[
1
e
+1,e+1]上的值域为[-(e+1)2-b,-(
1
e
+1)2-b]…(11分)
∵b>0
∴-(e+1)2-b,-(
1
e
+1)2-b都小于0
.
g(m2)-f(m1) 
  
.
<2e2+2e
,只要e2-3-[-(e+1)2-b]=e2-3+(e+1)2+b=2e2+2e-2+b<2e2+2e即可
…(12分)
解得:0<b<2…(14分)
点评:考查x=x0是极值点是f′(x0)=0的充分非必要条件,考查应用导数研究函数的极值最值问题,有关恒成立的问题一般采取分离参数,转化为求函数的最值问题,体现了转化的思想方法,属难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案