【题目】已知函数![]()
(Ⅰ)若曲线
与直线
相切,求
的值.
(Ⅱ)若
设
求证:
有两个不同的零点
,且
.(
为自然对数的底数)
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,左、右焦点分别是
,椭圆
上短轴的一个端点与两个焦点构成的三角形的面积为
;
(1)求椭圆
的方程;
(2)过
作垂直于
轴的直线
交椭圆
于
两点(点
在第二象限),
是椭圆上位于直线
两侧的动点,若
,求证:直线
的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电视台在互联网上征集电视节目的现场参与观众,报名的共有12000人,分别来自4个地区,其中甲地区2400人,乙地区4605人,丙地区3795人,丁地区1200人,主办方计划从中抽取60人参加现场节目,请设计一套抽样方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为
,过抛物线上一点
作抛物线
的切线
,
交
轴于点
.
(1)判断
的形状;
(2) 若
两点在抛物线
上,点
满足
,若抛物线
上存在异于
的点
,使得经过
三点的圆与抛物线在点
处的有相同的切线,求点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
在
上是增函数,则
的取值范围是( )
A.
B.
C.
D. ![]()
【答案】C
【解析】
若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)>0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围.
若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,
则当x∈[2,+∞)时,
x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数
即
,f(2)=4+a>0
解得﹣4<a≤4
故选:C.
【点睛】
本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键.
【题型】单选题
【结束】
10
【题目】圆锥的高
和底面半径
之比
,且圆锥的体积
,则圆锥的表面积为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】二次函数图象上部分点的横坐标x,纵坐标y的对应值如下表:
x | … | -4 | -3 | -2 | -1 | 0 | 1 | … |
| … | 5 | 0 | -3 | -4 | -3 | m | … |
(1)m= ;
(2)在图中画出这个二次函数的图象;
![]()
(3)当
时,x的取值范围是 ;
(4)当
时,y的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com