精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2,x∈[-1,2],g(x)=ax+2,x∈[-1,2],若对任意x1∈[-1,2],总存在x2∈[-1,2],使f(x1)=g(x2)成立,则a的取值范围是
(-∞,-2]∪[2,+∞)
(-∞,-2]∪[2,+∞)
分析:存在性问题:“若对任意x1∈[-1,2],总存在x2∈[-1,2],使f(x1)=g(x2)成立”,只需函数y=f(x)的值域为函数y=g(x)的值域的子集即可.
解答:解:若对任意x1∈[-1,2],总存在x2∈[-1,2],使f(x1)=g(x2)成立,
只需函数y=f(x)的值域为函数y=g(x)的值域的子集即可.
函数f(x)=x2,x∈[-1,2]的值域为[0,4].
下求g(x)=ax+2的值域.
①当a=0时,g(x)=2为常数,不符合题意舍去;
②当a>0时,g(x)的值域为[2-a,2+2a],要使[0,4]⊆[2-a,2+2a],
2-a≤0
2+2a≥4
,解得a≥2;
③当a<0时,g(x)的值域为[2+2a,2-a],要使[0,4]⊆[2+2a,2-a],
2+2a≤0
2-a≥4
2+4a≤0
2-a≥4
,解得a≤-2;
综上,m的取值范围为(-∞,-2]∪[2,+∞)
故答案为:(-∞,-2]∪[2,+∞).
点评:本题主要考查函数恒成立问题以及函数单调性的应用,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案