精英家教网 > 高中数学 > 题目详情
5.设某总体是由编号为01,02,…,19,20的20个个体组成的,利用下面的随机数表依次选取6个个体,选取方法是从随机数表第一行的第三列数字开始从左到右依次选取两个数字,则选出来的第6个个体的编号为19.
1818  0792  4544  1716  5809  7983  8619
6206  7650  0310  5523  6405  0526  6238.

分析 根据随机数表,依次进行选择即可得到结论.

解答 解:从从随机数表第一行的第三列数字开始从左到右依次选取两个数字小于20的编号依次为18,07,17,16,09,19则第5个个体的编号为19.
故答案为:19

点评 本题主要考查简单随机抽样的应用,正确理解随机数法是解决本题的关键,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若$a=2\int_{-3}^3{({x+|x|})dx}$,则在${({\sqrt{x}-\frac{1}{{\root{3}{x}}}})^a}$的展开式中,x的幂指数不是整数的项共有15项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设G为三角形ABC的重心,且$\overrightarrow{AG}$•$\overrightarrow{BG}$=0,若$\frac{1}{tanA}+\frac{1}{tanB}=\frac{λ}{tanC}$,则实数λ的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将函数f(x)的图象向左平移$\frac{π}{6}$个单位后得到函数g(x)的图象如图所示,则函数f(x)的解析式是(  )
A.$f(x)=sin({2x-\frac{π}{6}})$(x∈R)B.$f(x)=sin({2x+\frac{π}{6}})$(x∈R)C.$f(x)=sin({2x-\frac{π}{3}})$(x∈R)D.$f(x)=sin({2x+\frac{π}{3}})$(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示的多面体中,ABCD是平行四边形,BDEF是矩形,ED⊥面ABCD,∠ABD=$\frac{π}{6}$,AB=2AD.
(Ⅰ)求证:平面BDEF⊥平面ADE;
(Ⅱ)若ED=BD,求AF与平面AEC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知x>0,y>0,且$\frac{1}{3x+y}$+$\frac{2}{x+2y}$=2,则x+y的最小值是$\frac{9}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=sin($\frac{5π}{6}$-2x)-2sin(x-$\frac{π}{4}$)cos(x+$\frac{3π}{4}$).
(1)求函数f(x)的最小值正周期和单调递增区间;
(2)若x0∈[$\frac{π}{3}$,$\frac{7π}{12}$],且f(x0)=$\frac{1}{3}$,求cos2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.数列{an}满足a1=2,an+1=$\frac{2(n+2)}{n+1}$an(n∈N*),$\frac{{a}_{2017}}{{a}_{1}+{a}_{2}+…+{a}_{2016}}$=(  )
A.$\frac{1009}{1008}$B.$\frac{2015}{1007}$C.$\frac{2016}{2015}$D.$\frac{2015}{2014}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=eax(a≠0).
(1)当$a=\frac{1}{2}$时,令$g(x)=\frac{f(x)}{x}$(x>0),求函数g(x)在[m,m+1](m>0)上的最小值;
(2)若对于一切x∈R,f(x)-x-1≥0恒成立,求a的取值集合;
(3)求证:$\sum_{i=1}^n{\frac{1}{{i{{({\sqrt{e}})}^i}}}}<\frac{4}{e}$.

查看答案和解析>>

同步练习册答案