精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,a,b,c分别为角A,B,C的对边,且满足4cos2 ﹣cos2(B+C)= ,若a=2,则△ABC的面积的最大值是

【答案】
【解析】
解:∵A+B+C=π,
∴4cos2 ﹣cos2(B+C)=2(1+cosA)﹣cos2A=﹣2cos2A+2cosA+3=
∴2cos2A﹣2cosA+ =0.
∴cosA=
∵0<A<π,∴A= °.
∵a=2,由余弦定理可得:4=b2+c2﹣bc≥2bc﹣bc=bc,(当且仅当b=c=2,不等式等号成立).
∴bc≤4.
∴SABC= bcsinA≤ × =
所以答案是:
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:,以及对余弦定理的定义的理解,了解余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且满足 ,设{Sn}的前n项和为Tn , T2017=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校在一次第二课堂活动中,特意设置了过关智力游戏,游戏共五关.规定第一关没过者没奖励,过n(n∈N*)关者奖励2n1件小奖品(奖品都一样).如图是小明在10次过关游戏中过关数的条形图,以此频率估计概率.
(Ⅰ)求小明在这十次游戏中所得奖品数的均值;
(Ⅱ)规定过三关者才能玩另一个高级别的游戏,估计小明一次游戏后能玩另一个游戏的概率;
(Ⅲ)已知小明在某四次游戏中所过关数为{2,2,3,4},小聪在某四次游戏中所过关数为{3,3,4,5},现从中各选一次游戏,求小明和小聪所得奖品总数超过10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】奇函数f(x)定义域为(﹣π,0)∪(0,π),其导函数是f′(x).当0<x<π时,有f′(x)sinx﹣f(x)cosx<0,则关于x的不等式f(x)< f( )sinx的解集为(
A.( ,π)
B.(﹣π,﹣ )∪( ,π)
C.(﹣ ,0)∪(0,
D.(﹣ ,0)∪( ,π)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高速公路为人民出行带来极大便利,但由于高速上车速快,一旦出事故往往导致生命或财产的重大损失,我国高速公路最高限速120km/h,最低限速60km/h.
(1)当驾驶员以120 千米/小时速度驾车行驶,驾驶员发现前方有事故,以原车速行驶大约需要0.9秒后才能做出紧急刹车,做出紧急刹车后,车速依v(t)= t(t:秒,v(t):米/秒)规律变化直到完全停止,求驾驶员从发现前方事故到车辆完全停止时,车辆行驶的距离;(取ln5=1.6)
(2)国庆期间,高速免小车通行费,某人从襄阳到曾都自驾游,只需承担油费.已知每小时油费v(元)与车速有关,w= +40(v:km/h),高速路段必须按国家规定限速内行驶,假定高速上为匀速行驶,高速上共行驶了S千米,当高速上行驶的这S千米油费最少时,求速度v应为多少km/h?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣ax+2lnx(其中a是实数).
(1)求f(x)的单调区间;
(2)若设2(e+ )<a< ,且f(x)有两个极值点x1 , x2(x1<x2),求f(x1)﹣f(x2)取值范围.(其中e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年巴西奥运会的周边商品有80%左右为“中国制造”,所有的厂家都是经过层层筛选才能获此殊荣.甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采用分层抽样的方法从甲、乙两厂生产的产品共98件中分别抽取9件和5件,测量产品中的微量元素的含量(单位:毫克).下表是从乙厂抽取的5件产品的测量数据:

编号

1

2

3

4

5

x

169

178

166

175

180

y

75

80

77

70

81


(1)求乙厂生产的产品数量:
(2)当产品中的微量元素x、y满足:x≥175,且y≥75时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量:
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|3x﹣1|+x+2,
(1)解不等式f(x)≤3,
(2)若不等式f(x)>a的解集为R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a是常数,对任意实数x,不等式|x+1|﹣|2﹣x|≤a≤|x+1|+|2﹣x|都成立.
(Ⅰ)求a的值;
(Ⅱ)设m>n>0,求证:2m+ ≥2n+a.

查看答案和解析>>

同步练习册答案